为什么老师说原序列不平稳才可以做ols回归
答案:1 悬赏:20 手机版
解决时间 2021-03-28 23:32
- 提问者网友:山高云阔
- 2021-03-28 19:37
为什么老师说原序列不平稳才可以做ols回归
最佳答案
- 五星知识达人网友:旧脸谱
- 2021-03-28 21:12
面板数据的协整检验与协整回归
1、前提:
待检验的两个或多个变量之间(自变量与因变量),(单整:单个变量的差分平稳,一阶平稳:差分一次;二阶级平稳:差分两次;,,,,)必须是同阶单整。
原因:只有同阶单整,变量之间才有共同的增长趋势,才能同涨同落。时间序列的协整检验:先做回归,后做协整检验。2、面板数据的协整检验:先做协整检验,后做回归。
协整:变量之间的长期的稳定的协调关系。
3、面板数据的协整回归:
(1)不变系数模型(各单位之间的回归系数大体相同)
变系数模型(各单位之间的回归系数大体不同)
F检验:略。
(1)固定影响模型(总体数据)
(2)随机影响模型(样本数据)
三大回归:
1、截面数据的回归
(1)异方差(穷人的额外消费与富人的额外消费差距甚大:收入作为自变量;消费作为因变量)
影响:自变量“纳伪”
消除:WLS
(2)自相关(时间序列的残差之间相互关联)
如果模型成功,残差之间应该无自相关。白噪声WN。
影响:自变量“纳伪”
消除:广义差分法:既对因变量进行差分,也对自变量进行差分。
(狭义差分:只对因变量进行差分)。
共线性
信息重叠。
VIF:大于10
剔除法(剔点)。
2、时间序列
ARMA模型(自回归移动平均模型)
平稳性检验:单位根检验ADF
等均值(实际:等观测值,08年GDP与09年GDP相等)
同方差(实际:同残差,08年残差与09年的残差相同)
协方差(相关系数):只与时间跨度的长短有关。时间间隔越长,相互影响越弱。
随机漫步:(random walk)
随机漫步:方差变得无穷大,均值变得无意义。
“单位”根:回归系数为1.
单位根过程:非平稳过程!
单位根检验:ADF
时间序列的协整检验与协整回归
(面板数据的协整检验与协整回归的应用)
协整检验
判断时间序列是否同阶单整
如果同阶单整
ADF检验
协整回归
OLS方法
对残差进行白噪声检验(判断残差是否存在自相关)
Quick-generate series 在对话框中写:“et=resid”,点击“OK”。
打开et,进行单位根检验。
如果检验结果,et为平稳过程,则说明刚才所做回归是协整回归。
1、前提:
待检验的两个或多个变量之间(自变量与因变量),(单整:单个变量的差分平稳,一阶平稳:差分一次;二阶级平稳:差分两次;,,,,)必须是同阶单整。
原因:只有同阶单整,变量之间才有共同的增长趋势,才能同涨同落。时间序列的协整检验:先做回归,后做协整检验。2、面板数据的协整检验:先做协整检验,后做回归。
协整:变量之间的长期的稳定的协调关系。
3、面板数据的协整回归:
(1)不变系数模型(各单位之间的回归系数大体相同)
变系数模型(各单位之间的回归系数大体不同)
F检验:略。
(1)固定影响模型(总体数据)
(2)随机影响模型(样本数据)
三大回归:
1、截面数据的回归
(1)异方差(穷人的额外消费与富人的额外消费差距甚大:收入作为自变量;消费作为因变量)
影响:自变量“纳伪”
消除:WLS
(2)自相关(时间序列的残差之间相互关联)
如果模型成功,残差之间应该无自相关。白噪声WN。
影响:自变量“纳伪”
消除:广义差分法:既对因变量进行差分,也对自变量进行差分。
(狭义差分:只对因变量进行差分)。
共线性
信息重叠。
VIF:大于10
剔除法(剔点)。
2、时间序列
ARMA模型(自回归移动平均模型)
平稳性检验:单位根检验ADF
等均值(实际:等观测值,08年GDP与09年GDP相等)
同方差(实际:同残差,08年残差与09年的残差相同)
协方差(相关系数):只与时间跨度的长短有关。时间间隔越长,相互影响越弱。
随机漫步:(random walk)
随机漫步:方差变得无穷大,均值变得无意义。
“单位”根:回归系数为1.
单位根过程:非平稳过程!
单位根检验:ADF
时间序列的协整检验与协整回归
(面板数据的协整检验与协整回归的应用)
协整检验
判断时间序列是否同阶单整
如果同阶单整
ADF检验
协整回归
OLS方法
对残差进行白噪声检验(判断残差是否存在自相关)
Quick-generate series 在对话框中写:“et=resid”,点击“OK”。
打开et,进行单位根检验。
如果检验结果,et为平稳过程,则说明刚才所做回归是协整回归。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯