计算((2+2i)∧4)/((1-3½)∧5)=
答案:1 悬赏:0 手机版
解决时间 2021-03-17 03:24
- 提问者网友:贪了杯
- 2021-03-17 00:33
计算((2+2i)∧4)/((1-3½)∧5)=
最佳答案
- 五星知识达人网友:毛毛
- 2021-03-17 01:12
((2+2i)^4)/((1- √3)^5)
z=2+2i
|z|=2√2
argz =arctan(2/2) = π/4
z=2√2(cos(π/4) +isin(π/4))
z^4 = [2√2( cos(π/4) +isin(π/4) )]^4
= 64( cosπ +isinπ )
=-64i
(1- √3)^5
=1-5√3+10(√3)^2-10(√3)^3+5(√3)^4 -(√3)^5
=(1+30+45)+(-5-30-9)√3
=76-44√3
((2+2i)^4)/((1- √3)^5)
=64i/(44√3-76)
=64(44√3+76)i/32
=2(44√3+76)i
z=2+2i
|z|=2√2
argz =arctan(2/2) = π/4
z=2√2(cos(π/4) +isin(π/4))
z^4 = [2√2( cos(π/4) +isin(π/4) )]^4
= 64( cosπ +isinπ )
=-64i
(1- √3)^5
=1-5√3+10(√3)^2-10(√3)^3+5(√3)^4 -(√3)^5
=(1+30+45)+(-5-30-9)√3
=76-44√3
((2+2i)^4)/((1- √3)^5)
=64i/(44√3-76)
=64(44√3+76)i/32
=2(44√3+76)i
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯