已知数列{an}中,a1=1,Sn,an满足:an= 2Sn^2/2Sn-1 (n≥2)求数列{an}的通项公式
已知数列{an}中,a1=1,Sn,an满足:an= 2Sn^2/2Sn-1 (n≥2)求数列{an}的通项公式
答案:1 悬赏:50 手机版
解决时间 2021-02-28 09:09
- 提问者网友:人生佛魔见
- 2021-02-28 04:19
最佳答案
- 五星知识达人网友:北城痞子
- 2021-02-28 05:07
n≥2时,a[n]=s[n]-s[n-1],
将它代入an= 2Sn^2/2Sn-1 ,并化简,得
1/s[n]=1/s[n-1]+2 (n≥2)
上式表明{1/s[n]}是以1/s[1]=1/a[1]=1 为首项,2为公差的等差数列
所以1/s[n]=2n-1,s[n]=1/(2n-1) (n≥1)
故n=1时,a[1]=1;
n≥2时,a[n]=s[n]-s[n-1]
=1/(2n-1)-1/(2n-3)
=-2/[(2n-1)(2n-3)]
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯