如图,在菱形ABCD中,E,F分别是BC,CD上的一点,且BE=DF.
求证:AE=AF.
如图,在菱形ABCD中,E,F分别是BC,CD上的一点,且BE=DF.求证:AE=AF.
答案:2 悬赏:40 手机版
解决时间 2021-04-05 18:51
- 提问者网友:蓝莓格格巫
- 2021-04-05 15:51
最佳答案
- 五星知识达人网友:由着我着迷
- 2021-04-05 17:03
证明:∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D.
又∵BE=DF,
∴△ABE≌△ADF(SAS),
∴AE=AF.解析分析:要求证AE=AF,只要证明△ABE≌△ADF即可.点评:证明线段相等的问题,最常用的方法是证明三角形全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
∴AB=AD,∠B=∠D.
又∵BE=DF,
∴△ABE≌△ADF(SAS),
∴AE=AF.解析分析:要求证AE=AF,只要证明△ABE≌△ADF即可.点评:证明线段相等的问题,最常用的方法是证明三角形全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
全部回答
- 1楼网友:一叶十三刺
- 2021-04-05 18:07
这个问题的回答的对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯