一道运筹学的运输问题,求解答
答案:3 悬赏:80 手机版
解决时间 2021-11-26 06:44
- 提问者网友:城市野鹿
- 2021-11-25 17:23
一道运筹学的运输问题,求解答
最佳答案
- 五星知识达人网友:千杯敬自由
- 2021-11-25 17:44
model:
sets:
stim/1..5/:cap,dem, left;
link(stim,stim):tran, cost;
endsets
data:
cap=200 300 0 0 0 ;
dem=0 0 100 200 50;
cost=
0 6 7 8 9
6 0 5 4 3
7 2 0 5 1
1 5 1 0 4
8 9 7 6 0;
enddata
min=@sum(link:tran*cost);
@for(link(i,j)|i#eq#j:tran=0);
@for(stim(i)|i#le#2:@sum(link(i,j)|i#ne#j:tran(i,j))<=cap(i));
@for(stim(i)|i#ge#3:@sum(link(j,i)|j#lt#3:tran(j,i))-@sum(link(i,k)|k#gt#2:tran(i,k))=dem(i));
Global optimal solution found.
Objective value: 1550.000
Infeasibilities: 0.000000
Total solver iterations: 4
Variable Value Reduced Cost
CAP( 1) 200.0000 0.000000
CAP( 2) 300.0000 0.000000
CAP( 3) 0.000000 0.000000
CAP( 4) 0.000000 0.000000
CAP( 5) 0.000000 0.000000
DEM( 1) 0.000000 0.000000
DEM( 2) 0.000000 0.000000
DEM( 3) 100.0000 0.000000
DEM( 4) 200.0000 0.000000
DEM( 5) 50.00000 0.000000
LEFt( 1) 0.000000 0.000000
LEFt( 2) 0.000000 0.000000
LEFt( 3) 0.000000 0.000000
LEFt( 4) 0.000000 0.000000
LEFt( 5) 0.000000 0.000000
TRAN( 1, 1) 0.000000 0.000000
TRAN( 1, 2) 0.000000 6.000000
TRAN( 1, 3) 50.00000 0.000000
TRAN( 1, 4) 0.000000 2.000000
TRAN( 1, 5) 0.000000 4.000000
TRAN( 2, 1) 0.000000 8.000000
TRAN( 2, 2) 0.000000 0.000000
TRAN( 2, 3) 50.00000 0.000000
TRAN( 2, 4) 200.0000 0.000000
TRAN( 2, 5) 50.00000 0.000000
TRAN( 3, 1) 0.000000 7.000000
TRAN( 3, 2) 0.000000 2.000000
TRAN( 3, 3) 0.000000 0.000000
TRAN( 3, 4) 0.000000 12.00000
TRAN( 3, 5) 0.000000 8.000000
TRAN( 4, 1) 0.000000 1.000000
TRAN( 4, 2) 0.000000 5.000000
TRAN( 4, 3) 0.000000 7.000000
TRAN( 4, 4) 0.000000 0.000000
TRAN( 4, 5) 0.000000 10.00000
TRAN( 5, 1) 0.000000 8.000000
TRAN( 5, 2) 0.000000 9.000000
TRAN( 5, 3) 0.000000 12.00000
TRAN( 5, 4) 0.000000 11.00000
TRAN( 5, 5) 0.000000 0.000000
COST( 1, 1) 0.000000 0.000000
COST( 1, 2) 6.000000 0.000000
COST( 1, 3) 7.000000 0.000000
COST( 1, 4) 8.000000 0.000000
COST( 1, 5) 9.000000 0.000000
COST( 2, 1) 6.000000 0.000000
COST( 2, 2) 0.000000 0.000000
COST( 2, 3) 5.000000 0.000000
COST( 2, 4) 4.000000 0.000000
COST( 2, 5) 3.000000 0.000000
COST( 3, 1) 7.000000 0.000000
COST( 3, 2) 2.000000 0.000000
COST( 3, 3) 0.000000 0.000000
COST( 3, 4) 5.000000 0.000000
COST( 3, 5) 1.000000 0.000000
COST( 4, 1) 1.000000 0.000000
COST( 4, 2) 5.000000 0.000000
COST( 4, 3) 1.000000 0.000000
COST( 4, 4) 0.000000 0.000000
COST( 4, 5) 4.000000 0.000000
COST( 5, 1) 8.000000 0.000000
COST( 5, 2) 9.000000 0.000000
COST( 5, 3) 7.000000 0.000000
COST( 5, 4) 6.000000 0.000000
COST( 5, 5) 0.000000 0.000000
Row Slack or Surplus Dual Price
1 1550.000 -1.000000
2 0.000000 0.000000
3 0.000000 0.000000
4 0.000000 -7.000000
5 0.000000 -6.000000
6 0.000000 -5.000000
7 150.0000 0.000000
8 0.000000 2.000000
9 0.000000 -7.000000
10 0.000000 -6.000000
11 0.000000 -5.000000
sets:
stim/1..5/:cap,dem, left;
link(stim,stim):tran, cost;
endsets
data:
cap=200 300 0 0 0 ;
dem=0 0 100 200 50;
cost=
0 6 7 8 9
6 0 5 4 3
7 2 0 5 1
1 5 1 0 4
8 9 7 6 0;
enddata
min=@sum(link:tran*cost);
@for(link(i,j)|i#eq#j:tran=0);
@for(stim(i)|i#le#2:@sum(link(i,j)|i#ne#j:tran(i,j))<=cap(i));
@for(stim(i)|i#ge#3:@sum(link(j,i)|j#lt#3:tran(j,i))-@sum(link(i,k)|k#gt#2:tran(i,k))=dem(i));
Global optimal solution found.
Objective value: 1550.000
Infeasibilities: 0.000000
Total solver iterations: 4
Variable Value Reduced Cost
CAP( 1) 200.0000 0.000000
CAP( 2) 300.0000 0.000000
CAP( 3) 0.000000 0.000000
CAP( 4) 0.000000 0.000000
CAP( 5) 0.000000 0.000000
DEM( 1) 0.000000 0.000000
DEM( 2) 0.000000 0.000000
DEM( 3) 100.0000 0.000000
DEM( 4) 200.0000 0.000000
DEM( 5) 50.00000 0.000000
LEFt( 1) 0.000000 0.000000
LEFt( 2) 0.000000 0.000000
LEFt( 3) 0.000000 0.000000
LEFt( 4) 0.000000 0.000000
LEFt( 5) 0.000000 0.000000
TRAN( 1, 1) 0.000000 0.000000
TRAN( 1, 2) 0.000000 6.000000
TRAN( 1, 3) 50.00000 0.000000
TRAN( 1, 4) 0.000000 2.000000
TRAN( 1, 5) 0.000000 4.000000
TRAN( 2, 1) 0.000000 8.000000
TRAN( 2, 2) 0.000000 0.000000
TRAN( 2, 3) 50.00000 0.000000
TRAN( 2, 4) 200.0000 0.000000
TRAN( 2, 5) 50.00000 0.000000
TRAN( 3, 1) 0.000000 7.000000
TRAN( 3, 2) 0.000000 2.000000
TRAN( 3, 3) 0.000000 0.000000
TRAN( 3, 4) 0.000000 12.00000
TRAN( 3, 5) 0.000000 8.000000
TRAN( 4, 1) 0.000000 1.000000
TRAN( 4, 2) 0.000000 5.000000
TRAN( 4, 3) 0.000000 7.000000
TRAN( 4, 4) 0.000000 0.000000
TRAN( 4, 5) 0.000000 10.00000
TRAN( 5, 1) 0.000000 8.000000
TRAN( 5, 2) 0.000000 9.000000
TRAN( 5, 3) 0.000000 12.00000
TRAN( 5, 4) 0.000000 11.00000
TRAN( 5, 5) 0.000000 0.000000
COST( 1, 1) 0.000000 0.000000
COST( 1, 2) 6.000000 0.000000
COST( 1, 3) 7.000000 0.000000
COST( 1, 4) 8.000000 0.000000
COST( 1, 5) 9.000000 0.000000
COST( 2, 1) 6.000000 0.000000
COST( 2, 2) 0.000000 0.000000
COST( 2, 3) 5.000000 0.000000
COST( 2, 4) 4.000000 0.000000
COST( 2, 5) 3.000000 0.000000
COST( 3, 1) 7.000000 0.000000
COST( 3, 2) 2.000000 0.000000
COST( 3, 3) 0.000000 0.000000
COST( 3, 4) 5.000000 0.000000
COST( 3, 5) 1.000000 0.000000
COST( 4, 1) 1.000000 0.000000
COST( 4, 2) 5.000000 0.000000
COST( 4, 3) 1.000000 0.000000
COST( 4, 4) 0.000000 0.000000
COST( 4, 5) 4.000000 0.000000
COST( 5, 1) 8.000000 0.000000
COST( 5, 2) 9.000000 0.000000
COST( 5, 3) 7.000000 0.000000
COST( 5, 4) 6.000000 0.000000
COST( 5, 5) 0.000000 0.000000
Row Slack or Surplus Dual Price
1 1550.000 -1.000000
2 0.000000 0.000000
3 0.000000 0.000000
4 0.000000 -7.000000
5 0.000000 -6.000000
6 0.000000 -5.000000
7 150.0000 0.000000
8 0.000000 2.000000
9 0.000000 -7.000000
10 0.000000 -6.000000
11 0.000000 -5.000000
全部回答
- 1楼网友:西岸风
- 2021-11-25 19:23
1550
- 2楼网友:枭雄戏美人
- 2021-11-25 18:23
先选出运费最小的A2/B3,50件B3产品共花费 50x3=150 再选最小的A2/B2 200件B2产品共花费 200x4=800 再选A2/B1 300-200-50=50件B1共花费 50x5=250 再从A1/B1 100-50=50件共花费50x7=350 150+800+250+350=1550
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯