永发信息网

高中数学向量简单问题已知向量a=(1,2),向量b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).若向

答案:1  悬赏:30  手机版
解决时间 2021-08-15 05:15
  • 提问者网友:ミ烙印ゝ
  • 2021-08-14 15:07
高中数学向量简单问题
已知向量a=(1,2),向量b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).若向量a⊥向量b,问:是否存在实数t,使得向量(a-b)和向量m的夹角的夹角为π/4,若存在,请求出t;若不存在,请说明理由.

向高手请教,谢谢~~
最佳答案
  • 五星知识达人网友:躲不过心动
  • 2021-08-14 16:45

a⊥b,则a*b=0
|a-b|^2=(a-b)*(a-b)=|a|^2+|b|^2=5+1=6,|a-b|=√6
|a+tb|^2=(a+tb)*(a+tb)=|a|^2+t^2×|b|^2=5+t^2,|a+tb|=√(5+t^2)
(a-b)*m=(a-b)*(a+tb)=|a|^2-t|b|^2=5-t
a-b与m的夹角为π/4,则cos(π/4)=[(a-b)*(a+tb)]/|a-b|*|a+tb|]=(5-t)/[√6*(5+t^2),t=(-5±3√5)/2
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯