如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°,过点D做DE⊥AB,过点C做CF⊥BD,垂足分别为E,F
是说明:△DEF为等边三角形
如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°,过点D做DE⊥AB,过点C做CF⊥BD,
答案:1 悬赏:0 手机版
解决时间 2021-04-09 17:26
- 提问者网友:自食苦果
- 2021-04-08 18:55
最佳答案
- 五星知识达人网友:孤独的牧羊人
- 2021-04-08 19:19
证明:∵DC∥AB,AD=BC,∠A=60°,
∴∠A=∠ABC=60°,
∵BD平分∠ABC,
∴∠ABD=∠CBD= 12∠ABC=30°,
∵DC∥AB,
∴∠BDC=∠ABD=30°,
∴∠CBD=∠CDB,
∴CB=CD,
∵CF⊥BD,
∴F为BD的中点,
∵DE⊥AB,
∴DF=BF=EF,
由∠ABD=30°,得∠BDE=60°,
∴△DEF为等边三角形.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯