全等三角形的证明
- 提问者网友:你挡着我发光了
- 2021-04-27 05:51
- 五星知识达人网友:轻熟杀无赦
- 2021-04-27 06:44
SAS ASA SSA HL
- 1楼网友:风格不统一
- 2021-04-27 08:05
集体朗读三角形全等判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应相等,那么这两个三角形全等。 展示三角形全等的六种情况: ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) 例1 已知:如图,AB=CB,AD=CD.若P是BD上任意一点求证:(1 )BD是∠ABC的角平分线 。 (2)PA=PC ( 闪烁∠1,∠2,学生证明,然后展示) 证明: 在△ABD和△CBD中, AB=CB(已知), AD=CD(已知), BD=BD(公共边), ∴△ABD≌△CBD(SSS), ( 添加条件: 若P是BD上的任意一点, 增加结论:(2)PA=PC。 展示点P在BD上各点位置时情况,由学生证明) ∠1=∠2(全等三角形的对应角相等)。 在△ABP和△CBP中, AB=CB(已知), ∠1=∠2(已证), BP=BP(公共边), ∴△ABP≌CBP(SAS)∴PA=PC 把“若P是BD上任意一点”改成:“若P是BD延长线上的任意一点”请学生回答结论有无变化,能否说明理由或加以证明?讨论完成 例2 已知:如图,AD=CE,AE=CD(.闪烁AE,CD) B是AC的中点。探索ΔBDE是什么三角形?并加以证明。 证明:在△ACD和△CAE中, AD=CE(已知), AC=CA(公共边), CD=AE(已知), ∴△ACD≌△CAE(SSS), ∠DAC=∠ECA(全等三角形的对应角相等)。 在△ABD和△CBE中, AD=CE(已知), ∠DAB=∠ECB(已证), AB=CB(中点定义), 小结: 本节课我们学习了三角形全等判定定理3以及前两个三角形全等判定定理的综合应用。 在解题过程中,同学们如果一次全等无法证明的话,就应该想法利用两次全等加以证明。 在解题过程中,要注意挖掘隐含条件,如公共边、公共角…等。 练习: 1已知:如图,AB=CD,AD=CB,O是BD的中点,过点O的直线分别交AB,CD于点E,F。求证:OE=OF。 证明:在ΔABD和ΔCDB中, AB =____(____), ____= CB (____), BD =____(____), ∴ΔABD≌ΔCDB(______), ∠1=∠2(___________________). 在ΔBOE和Δ___中, ∠1=∠2 (____), OB = OD (_____________), ∠BOE=_____(__________), ∴ΔBOE≌Δ___(____), OE=OF(______________). 2 已知:如图,A,F,C,D四点在一直线上,AB=DE,BC=EF,AF=CD。 求证:BF=CE 证明:在△ACD和△CAE中,AD=CE(已知),AC=CA(公共边),CD=AE(已知),∴△ACD≌△CAE(SSS),∠DAC=∠ECA(全等三角形的对应角相等)。在△ABD和△CBE中,AD=CE(已知),∠DAB=∠ECB(已证),AB=CB(中点定义)三、练习:四、小结:本节课我们学习了三角形全等判定定理3以及前两个三角形全等判定定理的综合应用。在解题过程中,同学们如果一次全等无法证明的话,就应该想法利用两次全等加以证明。在解题过程中,要注意挖掘隐含条件,如公共边、公共角…等。
希望我的答案能帮助你。
- 2楼网友:人類模型
- 2021-04-27 07:15