永发信息网

若a^x=b^y=(ab)^xy,证明x+y=1

答案:2  悬赏:60  手机版
解决时间 2021-03-13 09:30
  • 提问者网友:寂寞梧桐
  • 2021-03-12 14:04
求过程
最佳答案
  • 五星知识达人网友:空山清雨
  • 2021-03-12 15:33
a^x = b^y = (ab)^xy => a^x = a^xy*b^xy =>
a^x = (a^x)^y* (b^y)x = (a^x)^y*(a^x)^x) = (a^x)^(x+y)
=> (a^x)^1 = (a^x)^(x+y) => x+y =1
全部回答
  • 1楼网友:白昼之月
  • 2021-03-12 16:38
ab(x²-y²)-(a²-b²)(xy+1)-(a²+b²)(x+y) =ab(x^2-y^2)-a^2(xy+1)+b^2(xy+1)-a^2(x+y)-b^2(x+y) =ab(x^2-y^2)-a^2(xy+1+x+y)+b^2(xy+1-x-y) =b^2(xy+1-x-y)+ab(x^2-y^2)-a^2(xy+1+x+y) =(x-1)(y-1)b^2+(x^2-y^2)ab-(x+1)(y+1)a^2 =[ (x-1)b - (y+1)a ][ (y-1)b + (x+1)a ] = (bx-b -ay-a) (by-b +ax+a)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯