永发信息网

证明arcsin x和x是等价无穷小?

答案:1  悬赏:60  手机版
解决时间 2021-06-08 19:56
  • 提问者网友:轻浮
  • 2021-06-07 20:32
证明arcsin x和x是等价无穷小?
最佳答案
  • 五星知识达人网友:摆渡翁
  • 2021-06-07 21:54

这个就是等价无穷小啊
证明在任何一本数学分析或高等数学书上面都有的
我帮你证明一个
n->0 lim(arc sin x/x)=1
证明:根据基本不等式
sin x< x < tan x ,0< x < pai/2
(基本不等式的推导可以画一个单位圆,然后对同一圆心角找到能够代表sin x数值和tan x数值的线段,通过围成三角形的面积比较可以得到这个不等式)
分别取倒数再乘以sin x得到
cos x< sin x/x < 1
因为这三个都是偶函数
所以推得不等式在(-pai/2,0)也成立
由于n->0时,lim cos x=1,lim 1=1
根据极限的夹逼性
得到n->0时,lim sin x/x=1
根据极限运算规则,可得lim x/sin x=1
然后,令U=arcsin x,因为x->0所以U->0
则lim arcsin x/x =lim U/sin U =1
证明完毕
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯