已知:如图,正方形ABCD中,E为CD边上一点,F为BC边延长线上一点,CE=CF.
(1)观察猜想BE和DF的大小关系,并证明你的猜想;
(2)若∠BEC=60°,求∠EFD的度数.
已知:如图,正方形ABCD中,E为CD边上一点,F为BC边延长线上一点,CE=CF.(1)观察猜想BE和DF的大小关系,并证明你的猜想;(2)若∠BEC=60°,求∠
答案:2 悬赏:70 手机版
解决时间 2021-01-04 17:40
- 提问者网友:山高云阔
- 2021-01-03 21:01
最佳答案
- 五星知识达人网友:醉吻情书
- 2021-01-03 22:23
解:(1)BE=DF.理由如下:
如图,∵四边形ABCD是正方形,
∴BC=CD,∠BCD=∠DCF=90°,
又∵CE=CF,
∴△BCE≌△DCF,
∴BE=DF;
(2)∵△BCE≌△DCF,∠BEC=60°,
∴∠DFC=∠BEC=60°,
∵∠DCF=90°,CE=CF,
∴∠CFE=45°,
∴∠EFD=∠DFC-∠CFE=15°.解析分析:(1)可利用边角边证明BE、DF所在的两个直角三角形全等,进而证明这两条线段相等;
(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相减即可得到所求角的度数.点评:综合考查了正方形的性质及全等三角形的判定与性质.用到的知识点为:考查两条线段的大小关系,一般考虑相等,证明这两条线段所在的三角形的全等是常用的方法.
如图,∵四边形ABCD是正方形,
∴BC=CD,∠BCD=∠DCF=90°,
又∵CE=CF,
∴△BCE≌△DCF,
∴BE=DF;
(2)∵△BCE≌△DCF,∠BEC=60°,
∴∠DFC=∠BEC=60°,
∵∠DCF=90°,CE=CF,
∴∠CFE=45°,
∴∠EFD=∠DFC-∠CFE=15°.解析分析:(1)可利用边角边证明BE、DF所在的两个直角三角形全等,进而证明这两条线段相等;
(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相减即可得到所求角的度数.点评:综合考查了正方形的性质及全等三角形的判定与性质.用到的知识点为:考查两条线段的大小关系,一般考虑相等,证明这两条线段所在的三角形的全等是常用的方法.
全部回答
- 1楼网友:走死在岁月里
- 2021-01-03 23:38
我也是这个答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯