导数的应用问题
答案:1 悬赏:60 手机版
解决时间 2021-05-08 00:16
- 提问者网友:暗中人
- 2021-05-07 05:50
用半径为R的圆铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,扇形的圆心角α为多大时,容器的容积最大。
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-05-07 06:18
扇形的弧长为
2πR*A/2π=RA
也就是锥形的底面圆周长。
所以底面的半径为
RA/2π
圆面积为
π(RA/2π)^2=R^2*A^2/4π
高为
√(R^2-R^2A^2/4π^2)=√[R^2*(4π^2-A^2)]/4π
锥形体积
V=1/3*√[R^2*(4π^2-A^2)]/4π*
R^2*A^2/4π
=(R^3/48π^2)*[A^2*√(4π^2-A^2)]
V'=(R^3/48π^2)*{2A*√(4π^2-A^2-A^2*2A/2√(4π^2-A^2)}
=(R^3/48π^2)*{[2A*(4π^-A^2)-A^3]/√(4π^2-A^2)}
V'=0
即[2A*(4π^2-A^2)-A^3]=0
8Aπ^2-3A^3=0
A*(8π^2-3A^2)=0
8π^2=3A^2
A=2√6/3*π
最后。你自己代一下数就好了。
2πR*A/2π=RA
也就是锥形的底面圆周长。
所以底面的半径为
RA/2π
圆面积为
π(RA/2π)^2=R^2*A^2/4π
高为
√(R^2-R^2A^2/4π^2)=√[R^2*(4π^2-A^2)]/4π
锥形体积
V=1/3*√[R^2*(4π^2-A^2)]/4π*
R^2*A^2/4π
=(R^3/48π^2)*[A^2*√(4π^2-A^2)]
V'=(R^3/48π^2)*{2A*√(4π^2-A^2-A^2*2A/2√(4π^2-A^2)}
=(R^3/48π^2)*{[2A*(4π^-A^2)-A^3]/√(4π^2-A^2)}
V'=0
即[2A*(4π^2-A^2)-A^3]=0
8Aπ^2-3A^3=0
A*(8π^2-3A^2)=0
8π^2=3A^2
A=2√6/3*π
最后。你自己代一下数就好了。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯