把下列各式分解因式:
(1)m(x-y)-n(y-x);(2)2x4-32
(3)a3-a;(4)(x+y)2-2(x+y)+1
(5)先尝试把下列代数式进行分解因式:
①1+x+x(1+x)=______;
②1+x+x(1+x)+x(1+x)2=______;
③1+x+x(1+x)+x(1+x)2+x(1+x)3=______;
…并根据你发现的规律,直接写出下面这个多项式分解因式的结果.
④1+x+x(1+x)+x(1+x)2+…+x(1+x)2008=______.
把下列各式分解因式:(1)m(x-y)-n(y-x);(2)2x4-32(3)a3-a;(4)(x+y)2-2(x+y)+1(5)先尝试把下列代数式进行分解因式:①1
答案:2 悬赏:30 手机版
解决时间 2021-04-11 05:05
- 提问者网友:感性作祟
- 2021-04-10 12:42
最佳答案
- 五星知识达人网友:爱难随人意
- 2021-04-10 13:52
解:(1)m(x-y)-n(y-x)=(m+n)(x-y);
(2)2x4-32=2(x4-16)=2[(x2)2-42]=2(x2+4)(x2-4)=2(x2+4)(x-2)(x+2);
(3)a3-a=a(a2-1)=a(a+1)(a-1);
(4)(x+y)2-2(x+y)+1=(x+y-1)2;
(5)①1+x+x(1+x)=(1+x)+x(1+x)=(1+x)2;
②1+x+x(1+x)+x(1+x)2=(1+x)+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)3;
③1+x+x(1+x)+x(1+x)2+x(1+x)3=(1+x)4;
看等号左右的变化,即都是先提公因式,或再运用提公因式,或依次提公因式分解所得;等号右边括号内的数据不变,2,3,4依次增大,故可推理出:
④1+x+x(1+x)+x(1+x)2+…+x(1+x)2008=(1+x)2009.解析分析:(1)m(x-y)-n(y-x)=m(x-y)+n(x-y),再提公因式x-y;
(2)提公因式2,再运用平方差公式分解彻底即可.2x4-32=2(x4-16)=2[(x2)2-42]=2(x2+4)(x2-4)=2(x2+4)(x-2)(x+2);
(3)a3-a=a(a2-1),再运用平方差公式分解;(4)(x+y)2-2(x+y)+1是将(x+y)看做一个整体,运用完全平方差公式分解的;(5)①1+x+x(1+x)=(1+x)2;
②1+x+x(1+x)+x(1+x)2=(1+x)3;
③1+x+x(1+x)+x(1+x)2+x(1+x)3=(1+x)4;
看等号左右的变化,即都是先提公因式,或再运用提公因式,或依次提公因式分解所得;等号右边括号内的数据不变,2,3,4依次增大,故可推理出:
④1+x+x(1+x)+x(1+x)2+…+x(1+x)2008=(1+x)2009.点评:本题考查对分解因式的掌握情况.
(2)2x4-32=2(x4-16)=2[(x2)2-42]=2(x2+4)(x2-4)=2(x2+4)(x-2)(x+2);
(3)a3-a=a(a2-1)=a(a+1)(a-1);
(4)(x+y)2-2(x+y)+1=(x+y-1)2;
(5)①1+x+x(1+x)=(1+x)+x(1+x)=(1+x)2;
②1+x+x(1+x)+x(1+x)2=(1+x)+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)3;
③1+x+x(1+x)+x(1+x)2+x(1+x)3=(1+x)4;
看等号左右的变化,即都是先提公因式,或再运用提公因式,或依次提公因式分解所得;等号右边括号内的数据不变,2,3,4依次增大,故可推理出:
④1+x+x(1+x)+x(1+x)2+…+x(1+x)2008=(1+x)2009.解析分析:(1)m(x-y)-n(y-x)=m(x-y)+n(x-y),再提公因式x-y;
(2)提公因式2,再运用平方差公式分解彻底即可.2x4-32=2(x4-16)=2[(x2)2-42]=2(x2+4)(x2-4)=2(x2+4)(x-2)(x+2);
(3)a3-a=a(a2-1),再运用平方差公式分解;(4)(x+y)2-2(x+y)+1是将(x+y)看做一个整体,运用完全平方差公式分解的;(5)①1+x+x(1+x)=(1+x)2;
②1+x+x(1+x)+x(1+x)2=(1+x)3;
③1+x+x(1+x)+x(1+x)2+x(1+x)3=(1+x)4;
看等号左右的变化,即都是先提公因式,或再运用提公因式,或依次提公因式分解所得;等号右边括号内的数据不变,2,3,4依次增大,故可推理出:
④1+x+x(1+x)+x(1+x)2+…+x(1+x)2008=(1+x)2009.点评:本题考查对分解因式的掌握情况.
全部回答
- 1楼网友:罪歌
- 2021-04-10 14:33
我学会了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯