0f(1-2m),求实数m的取值范围
答案:2 悬赏:50 手机版
解决时间 2021-02-14 09:41
- 提问者网友:流星是天使的眼泪
- 2021-02-14 03:56
0f(1-2m),求实数m的取值范围
最佳答案
- 五星知识达人网友:蓝房子
- 2021-02-14 04:10
【1】f(x)+f(y)=f(xy)if:x=y=1,2f(1)=f(1),f(1)=0y=1/xf(x)+f(1/x)=f(1)=0f(1/x)=-f(x)【2】设x>y>0,则x/y=k>1,1/y=k/x,f(k)>0f(x)-f(y)=f(x)+f(1/y)=f(x)+f(k/x)=f(x)+f(k)+f(1/x)=f(x)+f(k)-f(x)=f(k)>0f(x)在R+上是增函数.【3】f(m+1)>f(1-2m)定义域:m+1>0;1-2m>0单调性:m+1>1-2m解这个不等式组:0======以下答案可供参考======供参考答案1:(1)f(x)+f(y)=f(xy)x=0,y=1推出f(1)=0x=x,y=1/x推出(1)(2)x0(3)用前两部结论,代入求值供参考答案2:(1)f(1)+f(1)=f(1),所以f(1)=0 因为 f(1/x)+f(x)=f(1)=0, 所以f(1/x)=-f(x)(2)任取00, f(x2)>(x1) 所以f(x)在R+上单调递增(3)由(2)知m+1>0且1-2m>0且m+1>1-2m,所以0供参考答案3:(1)令x=1,y=1得f(1)=0令y=1/x得f(1/x)=-f(x)(2) 令y>1则f(x)+f(y)=f(xy)>f(x)有xy>x即对任意y>x均有f(y)>f(x)所以f(x)在R+单调递增(3)由(2)m+1>1-2m解得m>2/3供参考答案4:F(0)+f(1)=f(0)所以f(1)=0.f(1/x)+f(x)=f(1)=0.移项后所以第一问得证,则易得第二问(由正负符号关系和X大于0时F(x)大于0得)。然后由单调性解m+1>1-2m,同时注意定义域,得0供参考答案5:题抄错了 ?是满足F(x)+F(Y)=F(XY)?。。(1) 令Y=1/X 带入有 F(X)+F(1/X)=F(1) 而令X=Y=1带入可知 F(1)=0 从而有-F(x)=F(1/x) (2)设X1 X2均属于R+ 且X2大于X1 令X=X2 Y= 1/X1 则有 F(X2)+F(1/X1)=F(X2/X1) 由一问的推导可知 F(1/x1)=-F(X1) 且 X2/X1大于1 从而有 F(X2 )-F(X1)大于0 在结合X2大于 X1 知F(X)在R+上位增函数(3)由上问知 F(X)在R+上为增函数 知 若有 1-2M和 M+1均大于 0的话 则有1+M>1-2M 可知 M大于0 我不知道是否还有在R-的时候的情况 但是 电脑上打字太麻烦了 就到这里了 不好意思
全部回答
- 1楼网友:骨子里都是戏
- 2021-02-14 05:28
收益了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯