永发信息网

设x1<x2,定义区间[x1,x2]的长度为x2-x1,已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为___

答案:2  悬赏:0  手机版
解决时间 2021-12-29 11:58
  • 提问者网友:斑駁影
  • 2021-12-28 18:55
设x1<x2,定义区间[x1,x2]的长度为x2-x1,已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________
最佳答案
  • 五星知识达人网友:春色三分
  • 2021-12-28 19:23
1解析分析:根据题意可知当x≥0时,函数的定义域为[0,1];当x≤0时,函数的定义域为[-1,0].所以函数的定义域为[-1,1]此时长度为最大等于1-(-1)=2,而[0,1]或[-1,0]都可为区间的最小长度等于1,所以最大值与最小值的差为1.解答:当x≥0时,y=2x,因为函数值域为[1,2]即1=20≤2x≤2=21,根据指数函数的增减性得到0≤x≤1;
当x≤0时,y=2-x,因为函数值域为[1,2]即1=20≤2-x≤2=21,根据指数函数的增减性得到0≤-x≤1即-1≤x≤0.
故[a,b]的长度的最大值为1-(-1)=2,最小值为1-0=1或0-(-1)=1,则区间[a,b]的长度的最大值与最小值的差为1
全部回答
  • 1楼网友:风格不统一
  • 2021-12-28 19:54
对的,就是这个意思
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯