坐标系与参数方程
已知曲线C的极坐标是p=6sine,(e是角度,p是指那个近似p的字母),以极点为平面直角坐标系的原点,极轴为x的正半轴,建立平面直角坐标系,直线L的参数方程是x=(√2)t-1,y=(√2)t/2,(t为参数),则直线L与曲线C相交所得的弦的弦长为_______.
请写出答案,最重要是能够写出解题步骤或方法.
坐标系与参数方程已知曲线C的极坐标是p=6sine,(e是角度,p是指那个近似p的字母),以极点为平面直角坐标系的原点,
答案:1 悬赏:0 手机版
解决时间 2021-08-21 14:42
- 提问者网友:自食苦果
- 2021-08-20 16:10
最佳答案
- 五星知识达人网友:琴狂剑也妄
- 2021-08-20 16:22
主要思想是把极坐标方程和参数方程化为普通方程
利用ρ=√x²+y² ,sinθ=y/ρ,可以化得到圆的方程为x²+(y-3)²=9
由x=(√2)t-1,y=(√2)t/2,消去参数t 可以得到直线的普通方程x+2y+1=0
则圆心(0,3)到直线x+2y+1=0的距离d=√5 (利用点到直线的距离公式)半径r=3
利用勾股定理可求得半弦长为2
故相交弦 的长度为4,画图看更清楚些
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯