1.函数f(x)对于任意自然数x,满足f(x+1)=f(x)+1, f(0)=1 求f(5)
2. f(√x +1)=x+2√x 求f(x)
谢谢了
1.函数f(x)对于任意自然数x,满足f(x+1)=f(x)+1, f(0)=1 求f(5)
2. f(√x +1)=x+2√x 求f(x)
谢谢了
f(0)=1;∴f(0+1)=f(0)+1=2;
f(2)=f(1+1)=f(1)+1=2+1
f(3)=4;f(4)=5;f(5)=6
设t=√x +1
x=(t-1)²(t≥1)
将x=(t-1)²代入x+2√x有{(t-1)²}²+2( t-1)∴ f(x)=(x-1)^4+2x-1再化简
1.把f(0)=1带入f(x+1)=f(x)+1中的f(x)从而得到f(1)=2
以此类推得出f(5)=6
f(x+1)=f(x)+1
f(1)=f(0)+1
f(2)=f(1)+1
f(3)=f(2)+1
f(4)=f(3)+1
f(5)=f(4)+1
f(1)+f(2)+....f(5)=f(0)+...f(4)+5
f(5)=f(0)+5=6
f(√x +1)=x+2√x=(√x +1)^2-1
f(x)=x^2-1