圆周率是怎么来的
答案:1 悬赏:0 手机版
解决时间 2021-02-03 15:03
- 提问者网友:焚苦与心
- 2021-02-03 00:26
圆周率是怎么来的
最佳答案
- 五星知识达人网友:醉吻情书
- 2021-02-03 00:58
问题一:圆周率是怎样计算出来的? 祖冲之生於南北朝(西元429-500年)范阳蓟县人,他曾算出月球绕地球一周为27.21223日,和现在公认的27.21222日,在小数第五位才有1的误差.难怪西方科学家将月球上的一个火山坑命名叫「祖冲之」,这也是月球上唯一用中国人命名的地方.
在三千多年前,周朝的时候,认为圆周长和直径的比是三比一,也就是说,那个时候的圆周率等 於三,后来,历代许多数学家,像西汉的刘歆、东汉的张衡,都分别提出新的数值.不过,真正求出比较 精确圆周率的,是魏晋时代(约西元263年)的刘徽,而他所用的方法叫做『割圆术』.他发现:当圆内接正多边形的边数不断增加后,多边形的周长会越来越逼近圆周长,而多边形的面积也会越来越逼近圆面积.於是,刘徽利用正多边形面积和圆面积之间的关系,从正六边形开始,逐步把边数加倍:正十二边形、正二十四边形、正四十八边形、正九十六边形,算出圆周率等於3.141024.当时数学家利用一种竹片做成的『算筹』,摆放在地上代表数字进行运算,不但麻烦而且辛苦.
祖冲之在刘徽研究的基础上,进一步地发展,经过既漫长又烦琐的计算,一直算到圆内接正24576边形,而得到一个结论:圆周率的值介於3.1415926和3.1415927之间;同时,他还找到了圆周率的约率:22∕7、密率:355∕113.祖冲之为了求圆周率小数后的第七位准确值,把正六边形的边长计算到小数后二万八千六百七十二位,是很了不起的成就.这当中有三点值得我们注意的,
他是自己做的,因为开平方不能你求小数后第一位到第八位,同时间,有另外一人求第九位到第十六位,.
目前使用的算盘到了十二世纪才出现,祖冲之那个时代还没有算盘,可见其开平方的艰辛.问题二:圆周率是怎么得来的 [yuán zhōu lǜ]
圆周率
编辑
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sinx = 0的最小正实数x。
圆周率用字母 (读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。[1]
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式[2] 。问题三:圆周率是怎么得出来的? 3.14159265358979323846264338327950488
π=4∑(k=0,..∞)(-1)^k/(2k+1)
圆周率即圆的周长与其直径之间的比率。关于它的计算问题,历来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即 )的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长(参见图1-5-1),其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手(参见图1-5-2)得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。(参见图1-5-3)。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为3.14和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。
以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率为:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的, 比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.,其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。问题四:圆周率是怎么得到的? 是周长与直径的比值问题五:圆周率到底是什么? 圆周率
百科解释:
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母 (读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
记号:
是第十六个希腊字母的小写。这个符号,亦是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率 。1736年,瑞士大数学家欧拉也开始用“π”表示圆周率。从此,“π”便成了圆周率的代名词。
相关链接:
百度百科:baike.baidu.com/...i9wBA_
好搜百科:baike.haosou.com/doc/3397799-3576565.html
搜狗百科:baike.sogou.com/v119096.htm
在三千多年前,周朝的时候,认为圆周长和直径的比是三比一,也就是说,那个时候的圆周率等 於三,后来,历代许多数学家,像西汉的刘歆、东汉的张衡,都分别提出新的数值.不过,真正求出比较 精确圆周率的,是魏晋时代(约西元263年)的刘徽,而他所用的方法叫做『割圆术』.他发现:当圆内接正多边形的边数不断增加后,多边形的周长会越来越逼近圆周长,而多边形的面积也会越来越逼近圆面积.於是,刘徽利用正多边形面积和圆面积之间的关系,从正六边形开始,逐步把边数加倍:正十二边形、正二十四边形、正四十八边形、正九十六边形,算出圆周率等於3.141024.当时数学家利用一种竹片做成的『算筹』,摆放在地上代表数字进行运算,不但麻烦而且辛苦.
祖冲之在刘徽研究的基础上,进一步地发展,经过既漫长又烦琐的计算,一直算到圆内接正24576边形,而得到一个结论:圆周率的值介於3.1415926和3.1415927之间;同时,他还找到了圆周率的约率:22∕7、密率:355∕113.祖冲之为了求圆周率小数后的第七位准确值,把正六边形的边长计算到小数后二万八千六百七十二位,是很了不起的成就.这当中有三点值得我们注意的,
他是自己做的,因为开平方不能你求小数后第一位到第八位,同时间,有另外一人求第九位到第十六位,.
目前使用的算盘到了十二世纪才出现,祖冲之那个时代还没有算盘,可见其开平方的艰辛.问题二:圆周率是怎么得来的 [yuán zhōu lǜ]
圆周率
编辑
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sinx = 0的最小正实数x。
圆周率用字母 (读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。[1]
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式[2] 。问题三:圆周率是怎么得出来的? 3.14159265358979323846264338327950488
π=4∑(k=0,..∞)(-1)^k/(2k+1)
圆周率即圆的周长与其直径之间的比率。关于它的计算问题,历来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即 )的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长(参见图1-5-1),其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手(参见图1-5-2)得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。(参见图1-5-3)。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为3.14和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。
以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率为:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的, 比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.,其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。问题四:圆周率是怎么得到的? 是周长与直径的比值问题五:圆周率到底是什么? 圆周率
百科解释:
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母 (读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
记号:
是第十六个希腊字母的小写。这个符号,亦是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率 。1736年,瑞士大数学家欧拉也开始用“π”表示圆周率。从此,“π”便成了圆周率的代名词。
相关链接:
百度百科:baike.baidu.com/...i9wBA_
好搜百科:baike.haosou.com/doc/3397799-3576565.html
搜狗百科:baike.sogou.com/v119096.htm
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯