永发信息网

用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+

答案:1  悬赏:80  手机版
解决时间 2021-05-22 16:40
  • 提问者网友:嗝是迷路的屁
  • 2021-05-21 18:19
用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+1,给等式的左……
用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+1,给等式的左边需要增乘的代数式是?答案是2(2k+1),为什么?
最佳答案
  • 五星知识达人网友:渡鹤影
  • 2021-05-21 18:25

n=k时
等式左边为 (k+1)(k+2)...(k+k)
当n=k+1时
等式左边为 [(k+1)+1][(k+1)+2].[(k+1)+k][(k+1)+k+1]
比原来多了 两项[(k+1)+k][(k+1)+k+1] =2(2k+1)(k+1)
但是少了 一项 k+1
所以两式相除得需增加2(2k+1)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯