如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.
求证:BE=CF.
如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.
答案:2 悬赏:80 手机版
解决时间 2021-12-29 02:34
- 提问者网友:斑駁影
- 2021-12-28 02:40
最佳答案
- 五星知识达人网友:枭雄戏美人
- 2021-12-28 03:21
证明:∵四边形ABCD为矩形,
∴AC=BD,则BO=CO.
∵BE⊥AC于E,CF⊥BD于F,
∴∠BEO=∠CFO=90°.
又∵∠BOE=∠COF,
∴△BOE≌△COF.
∴BE=CF.解析分析:要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.点评:本题主要考查矩形的性质及三角形全等的判定方法.解此题的主要错误是思维顺势,想当然,由ABCD是矩形,就直接得出OB=OD,对对应边上的高的“对应边”理解不透彻.
∴AC=BD,则BO=CO.
∵BE⊥AC于E,CF⊥BD于F,
∴∠BEO=∠CFO=90°.
又∵∠BOE=∠COF,
∴△BOE≌△COF.
∴BE=CF.解析分析:要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.点评:本题主要考查矩形的性质及三角形全等的判定方法.解此题的主要错误是思维顺势,想当然,由ABCD是矩形,就直接得出OB=OD,对对应边上的高的“对应边”理解不透彻.
全部回答
- 1楼网友:患得患失的劫
- 2021-12-28 04:42
就是这个解释
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯