已知关于x的方程是否存在正数m,使方程的两个实数根的平方和等于224?若存在,求出满足条件的m的值.
答案:2 悬赏:0 手机版
解决时间 2021-01-03 09:30
- 提问者网友:暗中人
- 2021-01-03 05:42
已知关于x的方程是否存在正数m,使方程的两个实数根的平方和等于224?若存在,求出满足条件的m的值.
最佳答案
- 五星知识达人网友:不如潦草
- 2021-01-03 07:03
解:假设存在,则有x12+x22=224.
∵x1+x2=4m-8,
x1x2=4m2,
∴(x1+x2)2-2x1x2=224.
即(4m-8)2-2×4m2=224,
∴m2-8m-20=0,
(m-10)(m+2)=0,
∴m1=10,m2=-2.
∵△=(m-2)2-m2=4-4m≥0,
∴0<m≤1,
∴m1=10,m2=-2都不符合题意,
故不存在正数m,使方程的两个实数根的平方和等于224.解析分析:利用根与系数的关系,化简x12+x22=224,即(x1+x2)2-2x1x2=224.根据根与系数的关系即可得到关于m的方程,解得m的值,再判断m是否符合满足方程根的判别式.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.考查了根与系数的关系,也考查了存在性问题的解题方法和格式.
∵x1+x2=4m-8,
x1x2=4m2,
∴(x1+x2)2-2x1x2=224.
即(4m-8)2-2×4m2=224,
∴m2-8m-20=0,
(m-10)(m+2)=0,
∴m1=10,m2=-2.
∵△=(m-2)2-m2=4-4m≥0,
∴0<m≤1,
∴m1=10,m2=-2都不符合题意,
故不存在正数m,使方程的两个实数根的平方和等于224.解析分析:利用根与系数的关系,化简x12+x22=224,即(x1+x2)2-2x1x2=224.根据根与系数的关系即可得到关于m的方程,解得m的值,再判断m是否符合满足方程根的判别式.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.考查了根与系数的关系,也考查了存在性问题的解题方法和格式.
全部回答
- 1楼网友:duile
- 2021-01-03 07:59
回答的不错
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯