已知a、b、c是正数,且a+b+c=1,求证:1/(a+b)+1/(b+c)+1/(c+a) ≥ 9/2
(请写明解题步骤)
已知a、b、c是正数,且a+b+c=1,求证:1/(a+b)+1/(b+c)+1/(c+a) ≥ 9/2
(请写明解题步骤)
原式乘2等于,设a + b = x, b + c = y, c + a = z
2(a + b + c) / (a + b) + 2(a + b + c ) / ( b + c) + 2(a + b + c) / (c + a)
= 3 + (c + a) / (a + b) + (b + c) / (a + b) + (a + b) / (b + c) + (c + a) / (b + c) + (a + b) / (c + a) + (b + c) / (c + a)
=3 + (z / x + x / y + y / z) + (y / x + x / z + z / y)
>= 3 + 3 + 3(均值不等式)
所以原式<=9/2