捷诺是古希腊一名哲学家谁有他的详细资料
答案:1 悬赏:0 手机版
解决时间 2021-03-24 04:39
- 提问者网友:星軌
- 2021-03-23 07:21
捷诺是古希腊一名哲学家谁有他的详细资料
最佳答案
- 五星知识达人网友:七十二街
- 2021-03-23 07:32
Ζνων (Zeno,约前490年-前430年),一般译作“芝诺”,生于意大利半岛南部的埃利亚,据说因蓄谋反对埃利亚的统治者而被拘捕、拷打,直至处死。他以提出了四个关于运动不可能的悖论而知名,但缺乏其生平的详细资料。他创造这些悖论是为了支持他老师巴门尼德的理论。他认为世界上运动变化着的万物是不真实的,唯一真实的东西是巴门尼德所谓的“唯一不动的存在”,所以“存在”是一而不是多,是静不是动。 这些悖论是: 两分法悖论 运动是不可能的。 由于运动的物体在到达目的地前必须到达其半路上的点,若假设空间无限可分则有限距离包括无穷多点,于是运动的物体会在有限时间内经过无限多点。 这里的“运动”不是距离的概念,而是速度的概念。从A点到B点的运动不仅仅涉及到距离,并且涉及到时间。从A到B的运动如果发生在无限长的时间内,那么悖论就为真,因为此时速度为0。 阿喀琉斯悖论 “ 动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。 ” 芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑“数学派”所代表的毕达哥拉斯的“1>0.999..., 1-0.999...>0”思想。然后,他又用这个悖论,嘲笑他的学生芝诺的“1=0.999..., 但1-0.999...>0”思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的“1-0.999...=0, 或1-0.999...>0”思想。 譬如说,阿喀琉斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。追乌龟要涉及到极限问题:。而极限是个无限过程,这涉及到潜无限问题,即无限过程无法完成,即1只能无限逼近,不能达到1,乌龟是不能被追上的。为此,潜无限只能假设空间不可以无限分割,这样悖论就不存在了。但实无限认为,无限过程可以完成,即极限可以达到1,乌龟可以追上,无限过程怎么完成,凭信仰.我们的实数,极限,微积分都建立上实无限上,对潜无限来说,实数,极限等都不成立,只能无限逼近。 飞矢不动悖论 一支飞行的箭是静止的。 由于每一时刻这支箭都有其确定的位置因而是静止的,因此箭就不能处于运动状态。 但由于箭要达到每一时刻的固定位置必须存在动能,所以箭必须是运动状态 这个悖论的问题在于,“飞行”的运动,是依赖于两个时间点的。即从这一刻到那一刻的时间内,这支箭是否移动。 游行队伍悖论 首先假设在运动场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。B、C两个列队开始移动,相对于观众席A,B和C分别向右和左各移动了一个距离单位。而此时,对B而言C移动了两个距离单位。也就是,队列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此队列是移动不了的。
采纳哦
采纳哦
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯