永发信息网

怎样证明高中数学组合问题Cn1+2Cn2+3Cn3+……+nCnn=n/2(Cn0+Cn1+……+Cnn)?

答案:1  悬赏:50  手机版
解决时间 2021-08-20 17:00
  • 提问者网友:练爱
  • 2021-08-20 03:12
怎样证明高中数学组合问题Cn1+2Cn2+3Cn3+……+nCnn=n/2(Cn0+Cn1+……+Cnn)?
最佳答案
  • 五星知识达人网友:洒脱疯子
  • 2021-08-20 03:53

kc(n,k)=k*n!/[k!(n-k)!]=n!/[(k-1)!(n-1-k+1)!] = n*(n-1)!/[(k-1)!(n-1-k+1)!] = nc(n-1,k-1).
c(n,1)+2c(n,2)+3c(n,3)+...+nc(n,n)=n[c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1)]
(1+1)^(n-1) = c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1) = 2^(n-1),
(1+1)^n = c(n,0) + c(n,1)+...+c(n,n) = 2^n =
= 2*2^(n-1)
c(n,1)+2c(n,2)+3c(n,3)+...+nc(n,n)=n[c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1)]
=n*2^(n-1)
=(n/2)2^n
=(n/2)[c(n,0) + c(n,1)+...+c(n,n)]


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯