永发信息网

勾股定理公式?

答案:6  悬赏:20  手机版
解决时间 2021-02-12 02:33
  • 提问者网友:溺爱和你
  • 2021-02-11 15:28
勾股定理公式?
最佳答案
  • 五星知识达人网友:第幾種人
  • 2021-02-11 15:57
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:

直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,

设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
全部回答
  • 1楼网友:舊物识亽
  • 2021-02-11 21:17
设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
  • 2楼网友:一叶十三刺
  • 2021-02-11 19:50
三角形三边分别为a,b,c,a,b是直角边,c是斜边,勾股定理公式是a^2+b^2=c^2
  • 3楼网友:人间朝暮
  • 2021-02-11 18:25
常见的勾股数
  勾 股 弦
3K 4K 5K
5K 12K 13K
7K 24K 25K
8K 15K 17K
9K 40K 41K
...... ...... ......
a2 + b2 = c2
  • 4楼网友:夜余生
  • 2021-02-11 18:10
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,
设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
  • 5楼网友:拾荒鲤
  • 2021-02-11 17:09
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达高拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,
设直角三角形两直角边为a和b,斜边为c,那麽
a2 + b2 = c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组
满足勾股定理方程a2 + b2 = c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯