已知三角形的两边长是4和6,第三边是方程x2-17x+70=0的根,则此三角形的周长是________.
答案:2 悬赏:50 手机版
解决时间 2021-04-04 00:37
- 提问者网友:酱爆肉
- 2021-04-03 15:13
已知三角形的两边长是4和6,第三边是方程x2-17x+70=0的根,则此三角形的周长是________.
最佳答案
- 五星知识达人网友:酒醒三更
- 2021-04-03 15:51
17解析分析:把已知方程的左边利用十字相乘法分解因式,左边变为两因式积的学生,右边为0,化为两个一元一次方程,分别求出方程的解得到原方程的解,即可能为三角形的第三边,然后利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.解答:方程x2-17x+70=0,
因式分解得:(x-7)(x-10)=0,
可化为:x-7=0或x-10=0,
解得:x1=7,x2=10,
若x=7,则三角形的三边分别为4,6,7,其周长为4+6+7=17;
若x=10时,4+6=10,不能构成三角形,
则此三角形的周长是17.
故
因式分解得:(x-7)(x-10)=0,
可化为:x-7=0或x-10=0,
解得:x1=7,x2=10,
若x=7,则三角形的三边分别为4,6,7,其周长为4+6+7=17;
若x=10时,4+6=10,不能构成三角形,
则此三角形的周长是17.
故
全部回答
- 1楼网友:duile
- 2021-04-03 16:17
这个答案应该是对的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯