在△ABC中,已知D是BC的中点,DF⊥AB 于F,DE⊥ AC 于E,且DF=DE,那么 AB=AC吗?
初二初二初二
在△ABC中,已知D是BC的中点,DF⊥AB 于F,DE⊥ AC 于E,且DF=DE,那么 AB=AC吗?
初二初二初二
D是BC的中点,DF⊥AB 于F,DE⊥ AC 于E,且DF=DE
BDF全等于CDE
所以角B=C
AB=AC
解:相等
因为 DF=DE,BD=CD,DF⊥AB .DE⊥ AC
所以 BF=CE,AF=AE (根据三角形全等的出来)
则BF+AF=CE+AE,即AB=AC