永发信息网

已知函数f(x)是定义在[-1,1]上的函数,若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.(1)求f(0)的值

答案:2  悬赏:0  手机版
解决时间 2021-12-20 08:51
  • 提问者网友:遮云壑
  • 2021-12-19 15:47
已知函数f(x)是定义在[-1,1]上的函数,若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.
最佳答案
  • 五星知识达人网友:笑迎怀羞
  • 2021-12-19 16:09
解:(1)根据题意,在f(x+y)=f(x)+f(y)中,
令x=y=0,则f(0+0)=f(0)+f(0),
∴f(0)=0.
(2)令y=-x,则f(x-x)=f(x)+f(-x),即f(x)+f(-x)=f(0)=0,
∴f(-x)=-f(x),
又x∈[-1,1],其定义域关于原点对称,
∴f(x)是奇函数.
(3)设x1,x2∈[-1,1],且x1<x2,则x2-x1>0.
∵x>0时,有f(x)>0,∴f(x2-x1)>0,
又∵f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1),
∴f(x2)-f(x1)>0,即f(x2)>f(x1),
即f(x1)<f(x2),
∴函数f(x)在[-1,1]上是增函数.解析分析:(1)根据题意,用特殊值法,令x=y=0,可得f(0+0)=f(0)+f(0),计算可得
全部回答
  • 1楼网友:woshuo
  • 2021-12-19 17:43
我检查一下我的答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯