用火柴棒按图5-A-5中的方式搭图形
(1)按图示填空:
图形标号①②③④⑤火柴棒根数(2)根据上面的规律写出按照这种方式搭下去,搭第n个图形需要火柴根数的代数式;
(3)用(2)的代数式求第12个图形需要火柴根数.
用火柴棒按图5-A-5中的方式搭图形(1)按图示填空:图形标号①②③④⑤火柴棒根数(2)根据上面的规律写出按照这种方式搭下去,搭第n个图形需要火柴根数的代数式;(3)
答案:2 悬赏:40 手机版
解决时间 2021-04-09 18:13
- 提问者网友:十年饮冰
- 2021-04-09 08:07
最佳答案
- 五星知识达人网友:孤独的牧羊人
- 2021-04-09 08:21
解:(1)由图可知:
图形标号①的火柴棒根数为4;
图形标号②的火柴棒根数为7;
图形标号③的火柴棒根数为10;
按该搭建方式可求出:
图形标号④的火柴棒根数为13;
图形标号⑤的火柴棒根数为16.
(2)由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加3,
所以可以得出规律:搭第n个图形需要火柴根数为:4+3(n-1)=3n+1.
(3)当n=12时,需要火柴根数=3×12+1=37.解析分析:根据题中图形分别求出图形标号①、②、③的火柴棒的个数,再按其搭建式求出图形标号④、⑤的火柴棒数,通过归纳与总结得出规律:图形标号每增加1,火柴棒的个数增加3,由此求出第n个图形时需要火柴的根数的代数式,要求第12个图形,只需代入该代数式求值即可.点评:本题是一道关于图形变化规律型的,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.
图形标号①的火柴棒根数为4;
图形标号②的火柴棒根数为7;
图形标号③的火柴棒根数为10;
按该搭建方式可求出:
图形标号④的火柴棒根数为13;
图形标号⑤的火柴棒根数为16.
(2)由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加3,
所以可以得出规律:搭第n个图形需要火柴根数为:4+3(n-1)=3n+1.
(3)当n=12时,需要火柴根数=3×12+1=37.解析分析:根据题中图形分别求出图形标号①、②、③的火柴棒的个数,再按其搭建式求出图形标号④、⑤的火柴棒数,通过归纳与总结得出规律:图形标号每增加1,火柴棒的个数增加3,由此求出第n个图形时需要火柴的根数的代数式,要求第12个图形,只需代入该代数式求值即可.点评:本题是一道关于图形变化规律型的,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.
全部回答
- 1楼网友:鸠书
- 2021-04-09 08:55
这下我知道了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯