calculus,Rolle's Theorem,如下图,为什么f(x)在区间(-1,1)上不可导
答案:1 悬赏:60 手机版
解决时间 2021-02-15 16:20
- 提问者网友:两耳就是菩提
- 2021-02-15 01:11
calculus,Rolle's Theorem,如下图,为什么f(x)在区间(-1,1)上不可导
最佳答案
- 五星知识达人网友:煞尾
- 2021-02-15 02:11
根据导数的定义
函数 y=│x│是连续函数,但是 y=-x (x≤0),y=x (x>0), 则在 x=0 处,
其左导数为 lim[f(0+△x)-f(0)]/△x=[0-△x-0]/△x= -△x/△x=-1,
其右导数为 lim[f(0+△x)-f(0)]/△x=(0+△x-0)/△x= △x/△x=1,
在 x=0 处左右导数并不相等,所以 y=│x│在 x=0 处不可导。
而对于函数 y= x^(1/3),导函数为 y'=[x^(-2/3)]/3, 在 x=0 处 y'→∞,
即 在 x=0 处左右“导数”皆非有限值,不符合可导的定义。
函数 y=│x│是连续函数,但是 y=-x (x≤0),y=x (x>0), 则在 x=0 处,
其左导数为 lim[f(0+△x)-f(0)]/△x=[0-△x-0]/△x= -△x/△x=-1,
其右导数为 lim[f(0+△x)-f(0)]/△x=(0+△x-0)/△x= △x/△x=1,
在 x=0 处左右导数并不相等,所以 y=│x│在 x=0 处不可导。
而对于函数 y= x^(1/3),导函数为 y'=[x^(-2/3)]/3, 在 x=0 处 y'→∞,
即 在 x=0 处左右“导数”皆非有限值,不符合可导的定义。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯