如图高数极限
答案:3 悬赏:70 手机版
解决时间 2021-03-23 20:25
- 提问者网友:绫月
- 2021-03-23 02:34
如图高数极限
最佳答案
- 五星知识达人网友:一袍清酒付
- 2021-03-23 02:47
这里使用的是泰勒公式追问这里不是已经用完泰勒 吧x方要乘进去了吗 但是 x四方 怎么求出来的有点疑惑追答发完整图片追问
麻烦你了追答他这里就相当于把这个平方乘进去了,而高于4次方的都看成高阶无穷小的形式,因为最后高介无穷小比x^4是0的,所以他直接看成高介无穷小的形式,而这里只用看低于等于4次方的即可追问谢谢你的回答我还有一点不懂 如果高于四次看成无穷小形式 就是为0 ?那么 底下那个x四方怎么来的? 把6次方看成四次方吗 ?那系数2又是怎么来的呢追答
现在应该知道了 ,望采纳
追问嗯嗯谢谢你的回答
麻烦你了追答他这里就相当于把这个平方乘进去了,而高于4次方的都看成高阶无穷小的形式,因为最后高介无穷小比x^4是0的,所以他直接看成高介无穷小的形式,而这里只用看低于等于4次方的即可追问谢谢你的回答我还有一点不懂 如果高于四次看成无穷小形式 就是为0 ?那么 底下那个x四方怎么来的? 把6次方看成四次方吗 ?那系数2又是怎么来的呢追答
现在应该知道了 ,望采纳
追问嗯嗯谢谢你的回答
全部回答
- 1楼网友:低音帝王
- 2021-03-23 04:21
括号外面不是有平方吗,把平方乘开就得到了追问谢谢你的回答 可不是x3 开掉是x6吗追答完全平方公式,x乘以x^3/3!不就是x^4吗追问噗 请问完全平方完以后的9次方是当做无穷小直接约掉了哦
- 2楼网友:旧脸谱
- 2021-03-23 03:15
解:
根据题意:
x(n+1) - x(n)
=[2x(n)+a/x²(n)]/3 - x(n)
=[a/3x²(n)] - [x(n)/3]
考查函数:y=(a/x²) - x
y'=[(-2a)/x³] - 1
∵a>0
∴-2a<0
因此:
y'<0
y是减函数,即:
x(n+1) - x(n)
=[2x(n)+a/x²(n)]/3 - x(n)
=[a/3x²(n)] - [x(n)/3]
<0
∴x(n+1) 又
x(n+1)
=(1/3)[x(n)+x(n)+a/x²(n)]
≥x(n)·x(n)·a/x²(n).........................均值不等式
=a
∴x(n)单调递减且有下确界
根据柯西收敛准则,x(n)存在
令:lim(n→∞) x(n)=A
对原式两边求极限,则:
A=(1/3)(2A+a/A²)
A=a^(1/3)
∴
lim(n→∞) x(n)=a^(1/3)
根据题意:
x(n+1) - x(n)
=[2x(n)+a/x²(n)]/3 - x(n)
=[a/3x²(n)] - [x(n)/3]
考查函数:y=(a/x²) - x
y'=[(-2a)/x³] - 1
∵a>0
∴-2a<0
因此:
y'<0
y是减函数,即:
x(n+1) - x(n)
=[2x(n)+a/x²(n)]/3 - x(n)
=[a/3x²(n)] - [x(n)/3]
<0
∴x(n+1)
x(n+1)
=(1/3)[x(n)+x(n)+a/x²(n)]
≥x(n)·x(n)·a/x²(n).........................均值不等式
=a
∴x(n)单调递减且有下确界
根据柯西收敛准则,x(n)存在
令:lim(n→∞) x(n)=A
对原式两边求极限,则:
A=(1/3)(2A+a/A²)
A=a^(1/3)
∴
lim(n→∞) x(n)=a^(1/3)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯