已知sinθ+sin2θ=1,求3cos2θ+cos4θ-2sinθ+1的值.
答案:2 悬赏:60 手机版
解决时间 2021-01-03 22:34
- 提问者网友:王者佥
- 2021-01-03 00:03
已知sinθ+sin2θ=1,求3cos2θ+cos4θ-2sinθ+1的值.
最佳答案
- 五星知识达人网友:执傲
- 2021-01-03 01:17
解:由题意sinθ+sin2θ=1;
可以得到:sinθ=1-sin2θ=cos2θ,
所以原式=3sinθ+sin2θ-2sinθ+1=sinθ+1-cos2θ+1=sinθ-sinθ+2=2.解析分析:首先分析题目给的已知条件sinθ+sin2θ=1,可以得到sinθ=cos2θ,然后代入3cos2θ+cos4θ-2sinθ+1直接求得结果.点评:此题主要考查同角三角函数的基本关系的应用,应用到公式sin2θ+cos2θ=1,计算量小,属于基础题目.
可以得到:sinθ=1-sin2θ=cos2θ,
所以原式=3sinθ+sin2θ-2sinθ+1=sinθ+1-cos2θ+1=sinθ-sinθ+2=2.解析分析:首先分析题目给的已知条件sinθ+sin2θ=1,可以得到sinθ=cos2θ,然后代入3cos2θ+cos4θ-2sinθ+1直接求得结果.点评:此题主要考查同角三角函数的基本关系的应用,应用到公式sin2θ+cos2θ=1,计算量小,属于基础题目.
全部回答
- 1楼网友:枭雄戏美人
- 2021-01-03 02:53
这个问题的回答的对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯