已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.
(1)求证:AB=CF;
(2)若将梯形沿对角线AC折叠恰好D点与E点重合,梯形ABCD应满足什么条件,能使四边形ABFC为菱形?并加以证明.
已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.(1)求证:AB=CF;(2)若将梯形沿对角线AC折叠恰好D点与
答案:2 悬赏:70 手机版
解决时间 2021-12-19 13:37
- 提问者网友:风月客
- 2021-12-19 09:52
最佳答案
- 五星知识达人网友:掌灯师
- 2021-12-19 10:21
(1)证明:∵AB∥DC,CF是DC的延长线,
∴CF∥AB,(1分)
∴∠CFE=∠BAE,(2分)
又∵CE=BE,∠CEF=∠BEA,
∴△CEF≌△BEA,(3分)
∴AB=CF;(4分)
(2)当梯形ABCD是直角梯形,∠D=90°时,四边形ABFC为菱形.(5分)
证明:∵△CEF≌△BEA,
∴AB=CF,EF=EA,
∴四边形ABFC是平行四边形,(6分)
由折叠得∠AEC=∠D=90°,
∴AC=CF,(7分)
所以四边形ABFC为菱形(8分).解析分析:(1)由AB∥DC,即可得∠CFE=∠BAE,又由CE=BE,∠CEF=∠BEA,证得△CEF≌△BEA,则可得AB=CF;(2)由△CEF≌△BEA,易证得四边形ABFC是平行四边形,又由折叠的性质,可得AC=CF,则可得当梯形ABCD是直角梯形,∠D=90°时,四边形ABFC为菱形.点评:此题考查了梯形的性质,菱形的判定以及全等三角形的判定与性质.此题难度适中,解题的关键是数形结合思想的应用.
∴CF∥AB,(1分)
∴∠CFE=∠BAE,(2分)
又∵CE=BE,∠CEF=∠BEA,
∴△CEF≌△BEA,(3分)
∴AB=CF;(4分)
(2)当梯形ABCD是直角梯形,∠D=90°时,四边形ABFC为菱形.(5分)
证明:∵△CEF≌△BEA,
∴AB=CF,EF=EA,
∴四边形ABFC是平行四边形,(6分)
由折叠得∠AEC=∠D=90°,
∴AC=CF,(7分)
所以四边形ABFC为菱形(8分).解析分析:(1)由AB∥DC,即可得∠CFE=∠BAE,又由CE=BE,∠CEF=∠BEA,证得△CEF≌△BEA,则可得AB=CF;(2)由△CEF≌△BEA,易证得四边形ABFC是平行四边形,又由折叠的性质,可得AC=CF,则可得当梯形ABCD是直角梯形,∠D=90°时,四边形ABFC为菱形.点评:此题考查了梯形的性质,菱形的判定以及全等三角形的判定与性质.此题难度适中,解题的关键是数形结合思想的应用.
全部回答
- 1楼网友:洒脱疯子
- 2021-12-19 11:53
我明天再问问老师,叫他解释下这个问题
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯