永发信息网

如图2,三角形ABC中,有一点P在AC上移动,若AB=AC=5,BC=6,试求AP+BP+CP的最小值

答案:1  悬赏:50  手机版
解决时间 2021-04-21 16:29
  • 提问者网友:嘚啵嘚啵
  • 2021-04-21 05:52
如图2,三角形ABC中,有一点P在AC上移动,若AB=AC=5,BC=6,试求AP+BP+CP的最小值
最佳答案
  • 五星知识达人网友:摆渡翁
  • 2021-04-21 07:31

∵AP+CP=AC=5,∴要使AP+BP+CP取得最小值,只需要BP取得最小值就可以了.
显然,当BP是△ABC的高时,BP最小.下面证明这一结论:
在AC上任取一个不与P重合的点Q,则△BPQ是一个以BQ为斜边的直角三角形,由直角三角形的斜边大于直角边,得:BQ>BP.∴BP是AC上的点与B点的连线中最小的.
过A作AD⊥BC交BC于D.
∵AB=AC,∴BD=CD=BC/2=6/2=3,又AB=5,∴由勾股定理,容易得出:AD=4.
由三角形面积计算公式,得:△ABC的面积=BC×AD/2=AC×BP/2,
∴BP=BC×AD/AC=6×4/5=24/5.
∴AP+BP+CP的最小值是:5+24/5=49/5.


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯