要有图!
要讲明白!(我数学很垃圾)
一些定理要说一下!要有答案哦!
好的话帮你多加几分!
Thank you!
2010年中考数学动点题目固定解题思路+题目答案
答案:1 悬赏:50 手机版
解决时间 2021-02-20 21:27
- 提问者网友:你给我的爱
- 2021-02-20 09:51
最佳答案
- 五星知识达人网友:行路难
- 2021-02-20 10:37
1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)
(1) 求证:E点在y轴上;
(2) 如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3) 如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.
[解] (1)(本小题介绍二种方法,供参考)
方法一:过E作EO′⊥x轴,垂足O′∴AB‖EO′‖DC
∴
又∵DO′+BO′=DB
∴
∵AB=6,DC=3,∴EO′=2
又∵ ,∴
∴DO′=DO,即O′与O重合,E在y轴上
方法二:由D(1,0),A(-2,-6),得DA直线方程:y=2x-2①
再由B(-2,0),C(1,-3),得BC直线方程:y=-x-2 ②
联立①②得
∴E点坐标(0,-2),即E点在y轴上
(2)设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3)
E(0,-2)三点,得方程组
解得a=-1,b=0,c=-2
∴抛物线方程y=-x2-2
(3)(本小题给出三种方法,供参考)
由(1)当DC水平向右平移k后,过AD与BC的交点E′作E′F⊥x轴垂足为F。
同(1)可得: 得:E′F=2
方法一:又∵E′F‖AB ,∴
S△AE′C= S△ADC- S△E′DC=
= =DB=3+k
S=3+k为所求函数解析式
方法二:∵ BA‖DC,∴S△BCA=S△BDA
∴S△AE′C= S△BDE′
∴S=3+k为所求函数解析式.
证法三:S△DE′C∶S△AE′C=DE′∶AE′=DC∶AB=1∶2
同理:S△DE′C∶S△DE′B=1∶2,又∵S△DE′C∶S△ABE′=DC2∶AB2=1∶4
∴
∴S=3+k为所求函数解析式.
2. (2004广东茂名)已知:如图,在直线坐标系中,以点M(1,0)为圆心、直径AC为 的圆与y轴交于A、D两点.
(1)求点A的坐标;
(2)设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M的切线?并对你的结论加以证明;
(3)连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若 ,抛物线
y=ax2+bx+c经过B、M两点,且它的顶点到 轴的距离为 .求这条抛物线的解析式.
[解](1)解:由已知AM= ,OM=1,
在Rt△AOM中,AO= ,
∴点A的坐标为A(0,1)
(2)证:∵直线y=x+b过点A(0,1)∴1=0+b即b=1 ∴y=x+1
令y=0则x=-1 ∴B(—1,0),
AB=
在△ABM中,AB= ,AM= ,BM=2
∴△ABM是直角三角形,∠BAM=90°
∴直线AB是⊙M的切线
(3)解法一:由⑵得∠BAC=90°,AB= ,AC=2 ,
∴BC=
∵∠BAC=90° ∴△ABC的外接圆的直径为BC,
∴
而
,
设经过点B(—1,0)、M(1,0)的抛物线的解析式为:
y=a(+1)(x-1),(a≠0)即y=ax2-a,∴-a=±5,∴a=±5
∴抛物线的解析式为y=5x2-5或y=-5x2+5
解法二:(接上) 求得∴h=5
由已知所求抛物线经过点B(—1,0)、M(1、0),则抛物线的对称轴是y轴,由题意得抛物线的顶点坐标为(0,±5)
∴抛物线的解析式为y=a(x-0)2±5
又B(-1,0)、M(1,0)在抛物线上,∴a±5=0, a=±5
∴抛物线的解析式为 y=5x2-5或y=-5x2+5
解法三:(接上)求得∴h=5
因为抛物线的方程为y=ax2+bx+c(a≠0)
由已知得
∴抛物线的解析式为 y=5x2-5或y=-5x2+5.
3.(2004湖北荆门)如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线 过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧 的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
[解] (1)如图,连结PB,过P作PM⊥x轴,垂足为M.
在Rt△PMB中,PB=2,PM=1,
∴∠MPB=60°,∴∠APB=120°
的长=
(2)在Rt△PMB中,PB=2,PM=1,则MB=MA= .
又OM=1,∴A(1- ,0),B(1+ ,0),
由抛物线及圆的对称性得知点C在直线PM上,
则C(1,-3).
点A、B、C在抛物线上,则
解之得
抛物线解析式为
(3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PC‖OD.
又PC‖y轴,∴点D在y轴上,∴OD=2,即D(0,-2).
又点D(0,-2)在抛物线 上,故存在点D(0,-2),
使线段OC与PD互相平分.
4.(2004湖北襄樊)如图,在平面直角坐标系内,Rt△ABC的直角顶点C(0, )在 轴的正半轴上,A、B是 轴上是两点,且OA∶OB=3∶1,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.
(1)求过A、B、C三点的抛物线的解析式;
(2)请猜想:直线EF与两圆有怎样的位置关系?并证明你的猜想.
(3)在△AOC中,设点M是AC边上的一个动点,过M作MN‖AB交OC于点N.试问:在 轴上是否存在点P,使得△PMN是一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若不存在,请说明理由.
[解] (1)在Rt△ABC中,OC⊥AB,
∴△AOC≌△COB.
∴OC2=OA•OB.
∵OA∶OB=3∶1,C(0, ),
∴
∴OB=1.∴OA=3.
∴A(-3,0),B(1,0).
设抛物线的解析式为
则 解之,得
∴经过A、B、C三点的抛物线的解析式为
(2)EF与⊙O1、⊙O2都相切.
证明:连结O1E、OE、OF.
∵∠ECF=∠AEO=∠BFO=90°,
∴四边形EOFC为矩形.
∴QE=QO.
∴∠1=∠2.
∵∠3=∠4,∠2+∠4=90°,
∴EF与⊙O1相切.
同理:EF理⊙O2相切.
(3)作MP⊥OA于P,设MN=a,由题意可得MP=MN=a.
∵MN‖OA,
∴△CMN∽△CAO.
∴
∴
解之,得
此时,四边形OPMN是正方形.
∴
∴
考虑到四边形PMNO此时为正方形,
∴点P在原点时仍可满足△PNN是以MN为一直角边的等腰直角三角形.
故 轴上存在点P使得△PMN是一个以MN为一直角边的等腰直角三角形且 或
5.(2004湖北宜昌)如图,已知点A(0,1)、C(4,3)、E( , ),P是以AC为对角线的矩形ABCD内部(不在各边上)的—个动点,点D在y轴,抛物线y=ax2+bx+1以P为顶点.
(1)说明点A、C、E在一条条直线上;
(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;
(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点.这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.
(本题图形仅供分析参考用)
[解] (1)由题意,A(0,1)、C(4,3)确定的解析式为:y= x+1.
将点E的坐标E( , )代入y= x+1中,左边= ,右边= × +1= ,
∵左边=右边,∴点E在直线y= x+1上,即点A、C、E
在一条直线上.
(2)解法一:由于动点P在矩形ABCD内部,∴点P的纵坐标大于点A的纵坐标,而点A与点P都在抛物线上,且P为顶点,∴这条抛物线有最高点,抛物线的开口向下
解法二:∵抛物线y=ax2+bx+c的顶点P的纵坐标为 ,且P在矩形ABCD内部,∴1< <3,由1<1— 得— >0,∴a<0,∴抛物线的开口向下.
(3)连接GA、FA,∵S△GAO—S△FAO=3 ∴ GO•AO— FO•AO=3 ∵OA=1,∴GO—FO=6. 设F(x1,0)、G(x2,0),则x1、x2为方程ax2+bx+c=0的两个根,且x1<x2,又∵a<0,∴x1•x2= <0,∴x1<0<x2,
∴GO= x2,FO= —x1,∴x2—(—x1)=6,
即x2+x1=6,∵x2+x1= — ∴— =6,
∴b= —6a,
∴抛物线解析式为:y=ax2—6ax+1, 其顶点P的坐标为(3,1—9a), ∵顶点P在矩形ABCD内部,
∴1<1—9a<3, ∴— <a<0.
∴x=0或x= =6+ .
当x=0时,即抛物线与线段AE交于点A,而这条抛物线与线段AE有两个不同的交
点,则有:0<6+ ≤ ,解得:— ≤a<—
综合得:— <a<— ∵b= —6a,∴ <b<
6.(2004湖南长沙)已知两点O(0,0)、B(0,2),⊙A过点B且与x轴分别相交于点O、C,⊙A被y轴分成段两圆弧,其弧长之比为3∶1,直线l与⊙A切于点O,抛物线的顶点在直线l上运动.
(1)求⊙A的半径;
(2)若抛物线经过O、C两点,求抛物线的解析式;
(3)过l上一点P的直线与⊙A交于C、E两点,且PC=CE,求点E的坐标;
(4)若抛物线与x轴分别相交于C、F两点,其顶点P的横坐标为m,求△PEC的面积关于m的函数解析式.
[解] (1)由弧长之比为3∶1,可得∠BAO=90º
再由AB=AO=r,且OB=2,得r=2
(2)⊙A的切线l过原点,可设l为y=kx
任取l上一点(b,kb),由l与y轴夹角为45º可得:
b=-kb或b=kb,得k=-1或k=1,
∴直线l的解析式为y=-x或y=x
又由r= ,易得C(2,0)或C(-2,0)
由此可设抛物线解析式为y=ax(x-2)或y=ax(x+2)
再把顶点坐标代入l的解析式中得a=1
∴抛物线为y=x2-2x或y=x2+2x ……6分
(3)当l的解析式为y=-x时,由P在l上,可设P(m,-m)(m>0)
过P作PP′⊥x轴于P′,∴OP′=|m|,PP′=|-m|,∴OP=2m2,
又由切割线定理可得:OP2=PC•PE,且PC=CE,得PC=PE=m=PP′7分
∴C与P′为同一点,即PE⊥x轴于C,∴m=-2,E(-2,2)…8分
同理,当l的解析式为y=x时,m=-2,E(-2,2)
(4)若C(2,0),此时l为y=-x,∵P与点O、点C不重合,∴m≠0且m≠2,
当m<0时,FC=2(2-m),高为|yp|即为-m,
∴S=
同理当0<m<2时,S=-m2+2m;当m>2时,S=m2-2m;
∴S= 又若C(-2,0),
此时l为y=x,同理可得;S=
7.(2006江苏连云港)如图,直线 与函数 的图像交于A、B两点,且与x、y轴分别交于C、D两点.
(1)若 的面积是 的面积的 倍,求 与 之间的函数关系式;
(2)在(1)的条件下,是否存在 和 ,使得以 为直径的圆经过点 .若存在,求出 和 的值;若不存在,请说明理由.
[解](1)设 , (其中 ),
由 ,得
∴ • • ( • • • • ), ,
又 ,∴ ,即 ,
由 可得 ,代入 可得 ①
∴ , ,
∴ ,即 .
又方程①的判别式 ,
∴所求的函数关系式为 .
(2)假设存在 , ,使得以 为直径的圆经过点 .
则 ,过 、 分别作 轴的垂线,垂足分别为 、 .
∵ 与 都与 互余,∴ .
∴Rt ∽Rt ,∴ .
∴ ,∴ , ∴ ,
即 ②
由(1)知 , ,代入②得 ,
∴ 或 ,又 ,∴ 或 ,
∴存在 , ,使得以 为直径的圆经过点 ,且 或 .
8.(2004江苏镇江)已知抛物线 与x轴交于两点 、 ,与y轴交于点C,且AB=6.
(1)求抛物线和直线BC的解析式.
(2)在给定的直角坐标系中,画抛物线和直线BC.
(3)若 过A、B、C三点,求 的半径.
(4)抛物线上是否存在点M,过点M作 轴于点N,使 被直线BC分成面积比为 的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.
[解](1)由题意得:
解得
经检验m=1,∴抛物线的解析式为:
或:由 得, 或
抛物线的解析式为
由 得
∴A(-5,0),B(1,0),C(0,-5).
设直线BC的解析式为
则
∴直线BC的解析式为
(2)图象略.
(3)法一:在 中,
.
又
∴ 的半径
法二:
由题意,圆心P在AB的中垂线上,即在抛物线 的对称轴直线 上,设P(-2,-h)(h>0),
连结PB、PC,则 ,
由 ,即 ,解得h=2.
的半径 .
法三:
延长CP交 于点F.
为 的直径,
又
又
的半径为
(4)设MN交直线BC于点E,点M的坐标为 则点E的坐标为
若 则
解得 (不合题意舍去),
若 则
解得 (不合题意舍去),
存在点M,点M的坐标为 或(15,280).
你要善于在动的地方找不动,多练练中考的倒数第2题,相信你会有很大提高
(1) 求证:E点在y轴上;
(2) 如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3) 如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.
[解] (1)(本小题介绍二种方法,供参考)
方法一:过E作EO′⊥x轴,垂足O′∴AB‖EO′‖DC
∴
又∵DO′+BO′=DB
∴
∵AB=6,DC=3,∴EO′=2
又∵ ,∴
∴DO′=DO,即O′与O重合,E在y轴上
方法二:由D(1,0),A(-2,-6),得DA直线方程:y=2x-2①
再由B(-2,0),C(1,-3),得BC直线方程:y=-x-2 ②
联立①②得
∴E点坐标(0,-2),即E点在y轴上
(2)设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3)
E(0,-2)三点,得方程组
解得a=-1,b=0,c=-2
∴抛物线方程y=-x2-2
(3)(本小题给出三种方法,供参考)
由(1)当DC水平向右平移k后,过AD与BC的交点E′作E′F⊥x轴垂足为F。
同(1)可得: 得:E′F=2
方法一:又∵E′F‖AB ,∴
S△AE′C= S△ADC- S△E′DC=
= =DB=3+k
S=3+k为所求函数解析式
方法二:∵ BA‖DC,∴S△BCA=S△BDA
∴S△AE′C= S△BDE′
∴S=3+k为所求函数解析式.
证法三:S△DE′C∶S△AE′C=DE′∶AE′=DC∶AB=1∶2
同理:S△DE′C∶S△DE′B=1∶2,又∵S△DE′C∶S△ABE′=DC2∶AB2=1∶4
∴
∴S=3+k为所求函数解析式.
2. (2004广东茂名)已知:如图,在直线坐标系中,以点M(1,0)为圆心、直径AC为 的圆与y轴交于A、D两点.
(1)求点A的坐标;
(2)设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M的切线?并对你的结论加以证明;
(3)连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若 ,抛物线
y=ax2+bx+c经过B、M两点,且它的顶点到 轴的距离为 .求这条抛物线的解析式.
[解](1)解:由已知AM= ,OM=1,
在Rt△AOM中,AO= ,
∴点A的坐标为A(0,1)
(2)证:∵直线y=x+b过点A(0,1)∴1=0+b即b=1 ∴y=x+1
令y=0则x=-1 ∴B(—1,0),
AB=
在△ABM中,AB= ,AM= ,BM=2
∴△ABM是直角三角形,∠BAM=90°
∴直线AB是⊙M的切线
(3)解法一:由⑵得∠BAC=90°,AB= ,AC=2 ,
∴BC=
∵∠BAC=90° ∴△ABC的外接圆的直径为BC,
∴
而
,
设经过点B(—1,0)、M(1,0)的抛物线的解析式为:
y=a(+1)(x-1),(a≠0)即y=ax2-a,∴-a=±5,∴a=±5
∴抛物线的解析式为y=5x2-5或y=-5x2+5
解法二:(接上) 求得∴h=5
由已知所求抛物线经过点B(—1,0)、M(1、0),则抛物线的对称轴是y轴,由题意得抛物线的顶点坐标为(0,±5)
∴抛物线的解析式为y=a(x-0)2±5
又B(-1,0)、M(1,0)在抛物线上,∴a±5=0, a=±5
∴抛物线的解析式为 y=5x2-5或y=-5x2+5
解法三:(接上)求得∴h=5
因为抛物线的方程为y=ax2+bx+c(a≠0)
由已知得
∴抛物线的解析式为 y=5x2-5或y=-5x2+5.
3.(2004湖北荆门)如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线 过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧 的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
[解] (1)如图,连结PB,过P作PM⊥x轴,垂足为M.
在Rt△PMB中,PB=2,PM=1,
∴∠MPB=60°,∴∠APB=120°
的长=
(2)在Rt△PMB中,PB=2,PM=1,则MB=MA= .
又OM=1,∴A(1- ,0),B(1+ ,0),
由抛物线及圆的对称性得知点C在直线PM上,
则C(1,-3).
点A、B、C在抛物线上,则
解之得
抛物线解析式为
(3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PC‖OD.
又PC‖y轴,∴点D在y轴上,∴OD=2,即D(0,-2).
又点D(0,-2)在抛物线 上,故存在点D(0,-2),
使线段OC与PD互相平分.
4.(2004湖北襄樊)如图,在平面直角坐标系内,Rt△ABC的直角顶点C(0, )在 轴的正半轴上,A、B是 轴上是两点,且OA∶OB=3∶1,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.
(1)求过A、B、C三点的抛物线的解析式;
(2)请猜想:直线EF与两圆有怎样的位置关系?并证明你的猜想.
(3)在△AOC中,设点M是AC边上的一个动点,过M作MN‖AB交OC于点N.试问:在 轴上是否存在点P,使得△PMN是一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若不存在,请说明理由.
[解] (1)在Rt△ABC中,OC⊥AB,
∴△AOC≌△COB.
∴OC2=OA•OB.
∵OA∶OB=3∶1,C(0, ),
∴
∴OB=1.∴OA=3.
∴A(-3,0),B(1,0).
设抛物线的解析式为
则 解之,得
∴经过A、B、C三点的抛物线的解析式为
(2)EF与⊙O1、⊙O2都相切.
证明:连结O1E、OE、OF.
∵∠ECF=∠AEO=∠BFO=90°,
∴四边形EOFC为矩形.
∴QE=QO.
∴∠1=∠2.
∵∠3=∠4,∠2+∠4=90°,
∴EF与⊙O1相切.
同理:EF理⊙O2相切.
(3)作MP⊥OA于P,设MN=a,由题意可得MP=MN=a.
∵MN‖OA,
∴△CMN∽△CAO.
∴
∴
解之,得
此时,四边形OPMN是正方形.
∴
∴
考虑到四边形PMNO此时为正方形,
∴点P在原点时仍可满足△PNN是以MN为一直角边的等腰直角三角形.
故 轴上存在点P使得△PMN是一个以MN为一直角边的等腰直角三角形且 或
5.(2004湖北宜昌)如图,已知点A(0,1)、C(4,3)、E( , ),P是以AC为对角线的矩形ABCD内部(不在各边上)的—个动点,点D在y轴,抛物线y=ax2+bx+1以P为顶点.
(1)说明点A、C、E在一条条直线上;
(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;
(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点.这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.
(本题图形仅供分析参考用)
[解] (1)由题意,A(0,1)、C(4,3)确定的解析式为:y= x+1.
将点E的坐标E( , )代入y= x+1中,左边= ,右边= × +1= ,
∵左边=右边,∴点E在直线y= x+1上,即点A、C、E
在一条直线上.
(2)解法一:由于动点P在矩形ABCD内部,∴点P的纵坐标大于点A的纵坐标,而点A与点P都在抛物线上,且P为顶点,∴这条抛物线有最高点,抛物线的开口向下
解法二:∵抛物线y=ax2+bx+c的顶点P的纵坐标为 ,且P在矩形ABCD内部,∴1< <3,由1<1— 得— >0,∴a<0,∴抛物线的开口向下.
(3)连接GA、FA,∵S△GAO—S△FAO=3 ∴ GO•AO— FO•AO=3 ∵OA=1,∴GO—FO=6. 设F(x1,0)、G(x2,0),则x1、x2为方程ax2+bx+c=0的两个根,且x1<x2,又∵a<0,∴x1•x2= <0,∴x1<0<x2,
∴GO= x2,FO= —x1,∴x2—(—x1)=6,
即x2+x1=6,∵x2+x1= — ∴— =6,
∴b= —6a,
∴抛物线解析式为:y=ax2—6ax+1, 其顶点P的坐标为(3,1—9a), ∵顶点P在矩形ABCD内部,
∴1<1—9a<3, ∴— <a<0.
∴x=0或x= =6+ .
当x=0时,即抛物线与线段AE交于点A,而这条抛物线与线段AE有两个不同的交
点,则有:0<6+ ≤ ,解得:— ≤a<—
综合得:— <a<— ∵b= —6a,∴ <b<
6.(2004湖南长沙)已知两点O(0,0)、B(0,2),⊙A过点B且与x轴分别相交于点O、C,⊙A被y轴分成段两圆弧,其弧长之比为3∶1,直线l与⊙A切于点O,抛物线的顶点在直线l上运动.
(1)求⊙A的半径;
(2)若抛物线经过O、C两点,求抛物线的解析式;
(3)过l上一点P的直线与⊙A交于C、E两点,且PC=CE,求点E的坐标;
(4)若抛物线与x轴分别相交于C、F两点,其顶点P的横坐标为m,求△PEC的面积关于m的函数解析式.
[解] (1)由弧长之比为3∶1,可得∠BAO=90º
再由AB=AO=r,且OB=2,得r=2
(2)⊙A的切线l过原点,可设l为y=kx
任取l上一点(b,kb),由l与y轴夹角为45º可得:
b=-kb或b=kb,得k=-1或k=1,
∴直线l的解析式为y=-x或y=x
又由r= ,易得C(2,0)或C(-2,0)
由此可设抛物线解析式为y=ax(x-2)或y=ax(x+2)
再把顶点坐标代入l的解析式中得a=1
∴抛物线为y=x2-2x或y=x2+2x ……6分
(3)当l的解析式为y=-x时,由P在l上,可设P(m,-m)(m>0)
过P作PP′⊥x轴于P′,∴OP′=|m|,PP′=|-m|,∴OP=2m2,
又由切割线定理可得:OP2=PC•PE,且PC=CE,得PC=PE=m=PP′7分
∴C与P′为同一点,即PE⊥x轴于C,∴m=-2,E(-2,2)…8分
同理,当l的解析式为y=x时,m=-2,E(-2,2)
(4)若C(2,0),此时l为y=-x,∵P与点O、点C不重合,∴m≠0且m≠2,
当m<0时,FC=2(2-m),高为|yp|即为-m,
∴S=
同理当0<m<2时,S=-m2+2m;当m>2时,S=m2-2m;
∴S= 又若C(-2,0),
此时l为y=x,同理可得;S=
7.(2006江苏连云港)如图,直线 与函数 的图像交于A、B两点,且与x、y轴分别交于C、D两点.
(1)若 的面积是 的面积的 倍,求 与 之间的函数关系式;
(2)在(1)的条件下,是否存在 和 ,使得以 为直径的圆经过点 .若存在,求出 和 的值;若不存在,请说明理由.
[解](1)设 , (其中 ),
由 ,得
∴ • • ( • • • • ), ,
又 ,∴ ,即 ,
由 可得 ,代入 可得 ①
∴ , ,
∴ ,即 .
又方程①的判别式 ,
∴所求的函数关系式为 .
(2)假设存在 , ,使得以 为直径的圆经过点 .
则 ,过 、 分别作 轴的垂线,垂足分别为 、 .
∵ 与 都与 互余,∴ .
∴Rt ∽Rt ,∴ .
∴ ,∴ , ∴ ,
即 ②
由(1)知 , ,代入②得 ,
∴ 或 ,又 ,∴ 或 ,
∴存在 , ,使得以 为直径的圆经过点 ,且 或 .
8.(2004江苏镇江)已知抛物线 与x轴交于两点 、 ,与y轴交于点C,且AB=6.
(1)求抛物线和直线BC的解析式.
(2)在给定的直角坐标系中,画抛物线和直线BC.
(3)若 过A、B、C三点,求 的半径.
(4)抛物线上是否存在点M,过点M作 轴于点N,使 被直线BC分成面积比为 的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.
[解](1)由题意得:
解得
经检验m=1,∴抛物线的解析式为:
或:由 得, 或
抛物线的解析式为
由 得
∴A(-5,0),B(1,0),C(0,-5).
设直线BC的解析式为
则
∴直线BC的解析式为
(2)图象略.
(3)法一:在 中,
.
又
∴ 的半径
法二:
由题意,圆心P在AB的中垂线上,即在抛物线 的对称轴直线 上,设P(-2,-h)(h>0),
连结PB、PC,则 ,
由 ,即 ,解得h=2.
的半径 .
法三:
延长CP交 于点F.
为 的直径,
又
又
的半径为
(4)设MN交直线BC于点E,点M的坐标为 则点E的坐标为
若 则
解得 (不合题意舍去),
若 则
解得 (不合题意舍去),
存在点M,点M的坐标为 或(15,280).
你要善于在动的地方找不动,多练练中考的倒数第2题,相信你会有很大提高
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯