永发信息网

求证sin^2x+sin^2y-sin^2x*sin^2y+cos^2x*cos^2y=1

答案:2  悬赏:10  手机版
解决时间 2021-01-25 00:47
  • 提问者网友:蓝琪梦莎
  • 2021-01-24 09:27
求证sin^2x+sin^2y-sin^2x*sin^2y+cos^2x*cos^2y=1
最佳答案
  • 五星知识达人网友:过活
  • 2021-01-24 09:58
sin^2x+sin^2y-sin^2x*sin^2y+cos^2x*cos^2y= sin^2x-sin^2x*sin^2y+sin^2y+cos^2x*cos^2y= sin^2x*(1-sin^2y)+sin^2y+cos^2x*cos^2y= sin^2x*cos^2y+sin^2y+cos^2x*cos^2y= sin^2x*cos^2y+cos^2x*cos^2y+sin^2y= cos^2y(sin^2x+cos^2x)+sin^2y= cos^2y *1 + sin^2y= cos^2y + sin^2y= 1
全部回答
  • 1楼网友:渡鹤影
  • 2021-01-24 10:46
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯