实践与探索:
将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)
(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;
(2)十字框框住的5个数之和能等于2020吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;
(3)十字框框住的5个数之和能等于365吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.
实践与探索:将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代
答案:2 悬赏:10 手机版
解决时间 2021-01-05 00:15
- 提问者网友:记得曾经
- 2021-01-04 04:16
最佳答案
- 五星知识达人网友:走死在岁月里
- 2021-01-04 05:17
解:(1)从表格知道中间的数为a,上面的为a-12,下面的为a+12,左面的为a-2,右面的为a+2,
a+(a-2)+(a+2)+(a-12)+(a+12)=5a;
(2)5a=2020,
a=404,
这个是不可以的,因为a应为奇数;
(3)5a=365,
a=73,
又因为73÷12=6.1,所以73在第7行第一列,
因为我们设的a是十字框正中间的数,故不可能.解析分析:(1)从表格可看出上下相邻相差12,左右相邻相差2,中间的数为a,上面的为a-12,下面的为a+12,左面的为a-2,右面的为a+2,这5个数的和可用a来表示,
(2)代入2020看看求出的结果是整数就可以,不是整数就不可以.
(3)代入365看看求出的结果是整数就可以,再考虑中间数的位置,即可得出
a+(a-2)+(a+2)+(a-12)+(a+12)=5a;
(2)5a=2020,
a=404,
这个是不可以的,因为a应为奇数;
(3)5a=365,
a=73,
又因为73÷12=6.1,所以73在第7行第一列,
因为我们设的a是十字框正中间的数,故不可能.解析分析:(1)从表格可看出上下相邻相差12,左右相邻相差2,中间的数为a,上面的为a-12,下面的为a+12,左面的为a-2,右面的为a+2,这5个数的和可用a来表示,
(2)代入2020看看求出的结果是整数就可以,不是整数就不可以.
(3)代入365看看求出的结果是整数就可以,再考虑中间数的位置,即可得出
全部回答
- 1楼网友:几近狂妄
- 2021-01-04 06:31
就是这个解释
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯