永发信息网

集合 (26 22:45:35)

答案:1  悬赏:40  手机版
解决时间 2021-08-25 06:26
  • 提问者网友:自食苦果
  • 2021-08-24 11:10
集合 (26 22:45:35)
已知曲线y=x^2上任意两点P.Q都不关于y=m(x-3)对称,求m取值范围
最佳答案
  • 五星知识达人网友:归鹤鸣
  • 2021-08-24 11:17

假设一点A(x1,y1)在曲线y=x^2上,则它关于L:y=m(x-3)对称的点为
B(x2,y2):
则AB与L垂直,且L平分AB
所以交点D(x,y)
有下面的关系成立:
x=(x1+x2)/2
y=(y1+y2)/2
y=m(x-3)
(y2-y1)/(x2-x1)=-1/m
x1,y1
x1=[2my2+(1-m²)x2+6m²]÷(1+m²)
y1=[(m²-1)y2+2mx2-6m]÷(1+m²)
已知y1=x1²
所以(m²-1)y2+2mx2-6m=[2my2+(1-m²)x2+6m²]²
假设(x2,y2)在曲线上,有y2=x2²代入上式
此时:4m²x2^4+(4m-4m³)x2³+(24m³-2m²+2)x2²+(-12m^4+12m²-2m)x2+36m²+6m=0
所以要是上式无解的m的集合为原题的解
当m≠0时,上式一定会有解,系数矩阵和增广矩阵的秩相等
当m=0时,有2x2²=0,x2=0,此时x1=0,两点重合
所以当m=0 时,符合条件
所以m的取值范围为{m|m=0 }
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯