解答题
设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
解答题设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间及
答案:2 悬赏:20 手机版
解决时间 2021-01-03 10:43
- 提问者网友:别再叽里呱啦
- 2021-01-03 01:34
最佳答案
- 五星知识达人网友:空山清雨
- 2021-01-03 02:47
(1)解:∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
x(-∞,ln2)ln2(ln2,+∞)f′(x)-0+f(x)单调递减2(1-ln2+a)单调递增故f(x)的单调递减区间是(-∞,ln2),
单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,
极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).
(2)证明:设g(x)=ex-x2+2ax-1,x∈R,
于是g′(x)=ex-2x+2a,x∈R.
由(1)知当a>ln2-1时,
g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.解析分析:(1)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值.(2)设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明ex>x2-2ax+1.点评:本题考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用.解题时要认真审题,仔细解答.
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
x(-∞,ln2)ln2(ln2,+∞)f′(x)-0+f(x)单调递减2(1-ln2+a)单调递增故f(x)的单调递减区间是(-∞,ln2),
单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,
极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).
(2)证明:设g(x)=ex-x2+2ax-1,x∈R,
于是g′(x)=ex-2x+2a,x∈R.
由(1)知当a>ln2-1时,
g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.解析分析:(1)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值.(2)设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明ex>x2-2ax+1.点评:本题考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用.解题时要认真审题,仔细解答.
全部回答
- 1楼网友:迟山
- 2021-01-03 04:12
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯