永发信息网

已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为(loga2)+6,则a的值为(

答案:1  悬赏:40  手机版
解决时间 2021-05-23 23:21
  • 提问者网友:niaiwoma
  • 2021-05-23 04:00
已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为(loga2)+6,则a的值为(  )
A.
1
2

最佳答案
  • 五星知识达人网友:一叶十三刺
  • 2021-05-23 05:27

因为函数f(x)=ax+logax(a>0且a≠1),
所以函数f(x)在a>1时递增,最大值为f(2)=a2+loga2;最小值为f(1)=a1+loga1
函数f(x)在0<a<1时递减,最大值为f(1)=a1+loga1,最小值为f(2)=a2+loga2
故最大值和最小值的和为:f(1)+f(2)=a2+loga2+a1+loga1=loga2+6.
∴a2+a-6=0?a=2,a=-3(舍).
故选C.


试题解析:


先对a>1以及0<a<1分别求出其最大值和最小值,发现最大值与最小值之和都是f(1)+f(2);再结合最大值与最小值之和为(loga2)+6,即可求a的值.

名师点评:


本题考点: 对数函数的值域与最值;指数函数单调性的应用.
考点点评: 本题主要考查对数函数的值域问题.解决对数函数的题目时,一定要讨论其底数和1的大小关系,避免出错.

我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯