数列an中,a1=1,sn满足sn+1=sn-1/2an,求an
详细过程,谢谢
数列an中,a1=1,sn满足sn+1=sn-1/2an,求an
详细过程,谢谢
s(n+1)=sn-1/2an,
s(n+2)=s(n+1)-1/2a(n+1)
a(n+2)=a(n+1)-1/2a(n+1)+1/2an
a(n+2)=1/2a(n+1)+1/2an
a(n+2)-a(h+1)=-1/2a(n+1)+1/2an=-1/2[a(n+1)-an]
{a(n+1)-an}为等比数列
a1=1
s2=s1-1/2a1=1/2a1=1/2
a2=-1/2
a2-a1= -3/2
a(n+1)-an=(-1/2)^(n-1)*(a2-a1)=-3/2*(-1/2)^(n-1)=3*(-1/2)^n
an-a(n-1)=3*(-1/2)^(n-1)
a(n-1)-a(n-2)=3*(-1/2)^(n-2)
....
a2-a1=3*(-1/2)^1
a(n+1)-a1=[3*(-1/2)^n+3*(-1/2)^(n-1)+.;...\]
a(n+1)-a1=(-3/2)*(1-(-1/2)^n)/(1-(-1/2))
=(-1/2)^n-1
a(n+1)-1=(-1/2)^n-1
a(n+1)=(-1/2)^n
an=(-1/2)^(n-1)
因为 s(n+1)-sn=a(n+1)
所以sn+1=sn-1/2an 得 a(n+1)=-1/2an
a(n+1)/an=-1/2
所以数列an=(-1/2)^(n-1)
谢谢采纳