设一列数a1、a2,a3,…,a2013中任意三个相邻数之和都相等,已知a3=x,a999=3-2x,那么a2013=________.
答案:2 悬赏:0 手机版
解决时间 2021-04-04 15:24
- 提问者网友:捧腹剧
- 2021-04-03 21:48
设一列数a1、a2,a3,…,a2013中任意三个相邻数之和都相等,已知a3=x,a999=3-2x,那么a2013=________.
最佳答案
- 五星知识达人网友:梦中风几里
- 2021-04-03 22:30
1解析分析:先根据任意三个相邻数之和都相等,推出a1=a4,a2=a5,a3=a6,进而总结规律为a1=a3n+1,a2=a3n+2,a3=a3n,再根据规律得出a3=a999=a2013,列出关于x的方程,然后解方程即可.解答:∵任意三个相邻数之和都相等,
∴a1+a2+a3=a2+a3+a4,a2+a3+a4=a3+a4+a5,a3+a4+a5=a4+a5+a6,
∴a1=a4,a2=a5,a3=a6,
∴a1=a3n+1,a2=a3n+2,a3=a3n,
∵999=3×333,2013=3×671,
∴a3=a999=a2013,
∴x=3-2x,
解得x=1,
∴a2013=a3=1.
故
∴a1+a2+a3=a2+a3+a4,a2+a3+a4=a3+a4+a5,a3+a4+a5=a4+a5+a6,
∴a1=a4,a2=a5,a3=a6,
∴a1=a3n+1,a2=a3n+2,a3=a3n,
∵999=3×333,2013=3×671,
∴a3=a999=a2013,
∴x=3-2x,
解得x=1,
∴a2013=a3=1.
故
全部回答
- 1楼网友:刀戟声无边
- 2021-04-03 23:40
我学会了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯