∫(arctanx)²dx=
答案:2 悬赏:50 手机版
解决时间 2021-01-03 10:58
- 提问者网友:焚苦与心
- 2021-01-03 03:03
∫(arctanx)²dx=
最佳答案
- 五星知识达人网友:洒脱疯子
- 2021-01-07 01:02
∫x(arctanx)²dx
=1/2∫(arctanx)²dx²
=1/2(xarctanx)²-∫(x²arctanx)/(1+x²)dx
=1/2(xarctanx)²-∫[arctanx-arctanx/(1+x²)]dx
=1/2(xarctanx)²-∫arctanxdx-∫arctanxd(arctanx)
=1/2(xarctanx)²-xarctanx+∫x/(1+x²)dx-1/2(arctanx)²
=1/2(xarctanx)²-xarctanx+1/2ln(1+x²)-1/2(arctanx)²+C
=1/2∫(arctanx)²dx²
=1/2(xarctanx)²-∫(x²arctanx)/(1+x²)dx
=1/2(xarctanx)²-∫[arctanx-arctanx/(1+x²)]dx
=1/2(xarctanx)²-∫arctanxdx-∫arctanxd(arctanx)
=1/2(xarctanx)²-xarctanx+∫x/(1+x²)dx-1/2(arctanx)²
=1/2(xarctanx)²-xarctanx+1/2ln(1+x²)-1/2(arctanx)²+C
全部回答
- 1楼网友:迟山
- 2021-01-07 02:05
d(arctanx)=1/(x^2+1)dx,所以∫(arctanx)^2dx=[(1+x^2)(arctanx)^3/3]+c
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯