永发信息网

1.已知点(1,1/3)是函数F(x)a^x(a>0,且a≠1)的图像上一点,等比数列{an}的前n项和为f(n)-c,

答案:1  悬赏:10  手机版
解决时间 2021-04-27 23:26
  • 提问者网友:雨不眠的下
  • 2021-04-27 13:26
1.已知点(1,1/3)是函数F(x)a^x(a>0,且a≠1)的图像上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足点Sn-Sn-1=√Sn+√Sn-1(n≥2)
求 (1)数列{an}{bn}通项公式
(2) 若数列{1/(bnbn+1)}前n项和为Tn,问Tn>1000/2009的最小正整数n是多少
已知函数f(x)=x^2,g(x)=x-1
求(1) 若存在x属于R使f(x)<bg(x),求实数b的取值范围
(2) 设F(x)=f(x)-mg(x)+1-m-m^2
已知函数f(x)=x^2+2x,g(x)=f(x+1)-f(x)
(1)求g(x)解析式
(2)若h(x)=f(x)-ag(x)在【-1,1】上是增函数,求实数a的取值范围
最佳答案
  • 五星知识达人网友:掌灯师
  • 2021-04-27 14:45

1、(1)∵(1,1/3)是函数f(x)=a^x图像上一点 ∴1/3=a,f(x)=(1/3)^x
∵等比数列{an}前n项和Tn为f(n)-c=(1/3)^n-c
∴Tn=(1/3)^n-c,T(n+1)=(1/3)^(n+1)-c;a(n+1)=T(n+1)-Tn=(1/3)^(n+1)-(1/3)^n=(-2/3)*(1/3)^n
an=(-2)*(1/3)^n,公比为1/3,a1=-2/3
∴Tn=a1(1-q^n)/(1-q)=(1/3)^n-1,c=1
∵数列{bn}9bn>0)首项为c,前n项和Sn满足Sn-S(n-1)=√(Sn)+√(S(n-1))
∴(√(Sn)+√S(n-1))(√Sn-√S(n-1))=√(Sn)+√S(n-1)
∵bn>0 ∴Sn>0,√Sn-√S(n-1)=1
∴√Sn=(√Sn-√S(n-1))+(√S(n-1)-√S(n-2))+……(√S2-√S1)+√S1
=1*(n-1)+√c
∴Sn=(n+(√c)-1)^2,当n=1时,S1=b1=(√c)^2=c成立
∴Sn=(n+(√c)-1)^2(n属于N*),S(n+1)=(n+(√c))^2
∴b(n+1)=S(n+1)-Sn=(n+(√c))^2-(n+(√c)-1)^2=(2n+2√c-1)*1=2n+(2√c)-1
=2(n+1)+(2√c)-3,bn=2n+(2√c)-3=2n-1(n属于N*)
∴an=(-2)*(1/3)^n,bn=2n-1(n属于N*)
(2)Tn=[1/(b1*b2)]+[1/(b2*b3)]+……+[1/(bn*b(n+1))]
=[1/(1*3)]+[1/(3*5)]+……+[1/((2n-1)(2n+1))]
=(1/2)[1-(1/3)]+(1/2)[(1/3)-(1/5)]+……+(1/2)[(1/(2n-1))-(1/(2n+1))]
=(1/2)[1-(1/3)+(1/3)-……+(1/(2n-1))-(1/(2n+1))]
=(1/2)[1-(1/(2n+1))]=(1/2)*(2n/(2n+1))=n/(2n+1)(n属于N*)
∵Tn>1000/2009 ∴n/(2n+1)>1000/2009,2009n>2000n+1000
9n>1000,n>1000/9=111+(1/9)
∴(n)min=112
2、(1)∵f(x)=x^2,g(x)=x-1 又∵存在x属于R使f(x)<bg(x)
∴x^2<bx-b,x^2-bx-b<0 ∴x^2-bx-b<0存在实数根,y=x^2-bx-b图像与x轴有交点
∴Δ=b^2+4b>0,b(b+4)>0 ∴b属于(-∞,-4)∪(0,+∞)
第二问请补充问题
3、(1)∵f(x)=x^2+2x,g(x)=f(x+1)-f(x)
∴g(x)=(x+1)^2+2(x+1)-x^2-2x=(x+1-x)(x+1+x)+2=2x+3
∴g(x)=2x+3(x属于R)
(2)由(1):f(x)=x^2+2x,g(x)=2x+3(x属于R)
∴h(x)=f(x)-ag(x)=x^2+2x-2ax-3a=x^2+2(1-a)*x-3a
=[x+(1-a)]^2-a^2-a-1(x属于R),对称轴x=a-1
∵h(x)在[-1,1]上为增函数
∴画图,x=a-1≤-1,a≤0 ∵h(x)
再问: (2) 设F(x)=f(x)-mg(x)+1-m-m^2且|F(x)|在【0,1】上单调递增,求实数m的取值范围 谢了~


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯