永发信息网

圆周率的来历。。

答案:3  悬赏:30  手机版
解决时间 2021-01-28 07:57
  • 提问者网友:心牵心
  • 2021-01-27 18:06
圆周率的来历。。
最佳答案
  • 五星知识达人网友:七十二街
  • 2021-01-27 18:21
祖冲之在数学上的杰出成就,是关于圆周率的计算。

在秦汉以前,通常以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过到最后还是没有统一到底是多少。


到了三国的时候,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。祖冲之在前人成就的基础上,经过刻苦钻研和反复的演算终于得出了现在的圆周率。
圆的周长与直径之比是一个常数,通常称为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,经过欧拉予以提倡,才渐渐的推广开来。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是这样的,到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为3.16。
直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。


全部回答
  • 1楼网友:神的生死簿
  • 2021-01-27 20:03
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.
  • 2楼网友:老鼠爱大米
  • 2021-01-27 18:43
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯