永发信息网

如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF的度数是A.60°B.110°C.120°D.135

答案:2  悬赏:70  手机版
解决时间 2021-12-23 07:35
  • 提问者网友:辞取
  • 2021-12-22 08:05
如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF的度数是A.60°B.110°C.120°D.135°
最佳答案
  • 五星知识达人网友:拾荒鲤
  • 2022-01-22 06:24
C解析分析:∠FAE+∠AEF可转化为∠FAE+∠EBC+∠C,由∠EBC=∠BAD,所以又可转化为∠FAE+∠BAD+∠C,进而可求解.解答:在等边△ABC中,∴∠ABC=∠C=60°,AB=BC,又BD=CE,∴△ABD≌△BCE,∴∠BAD=∠CBE,∠FAE+∠AEF=∠FAE+∠EBC+∠C=∠FAE+∠BAD+∠C=60°+60°=120°,故选C.点评:题中重点在于由∠BAD=∠CBE而得∠FAE+∠EBC+∠C=∠FAE+∠BAD+∠C的过程,即角的转化.
全部回答
  • 1楼网友:山有枢
  • 2022-01-22 07:21
感谢回答,我学习了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯