永发信息网

在平面上任给n个点P1,P2,…,Pn,证明在单位圆周上存在点A满足|AP1|*|AP2|*…*|APn|

答案:1  悬赏:0  手机版
解决时间 2021-03-23 09:00
  • 提问者网友:却不属于对方
  • 2021-03-22 15:00
在平面上任给n个点P1,P2,…,Pn,证明在单位圆周上存在点A满足|AP1|*|AP2|*…*|APn|
最佳答案
  • 五星知识达人网友:纵马山川剑自提
  • 2021-03-22 15:20
利用复变函数证明。
设P1,P2,...,Pn在复平面上表示成复数为z1,z2,...,zn
定义n次多项式P(z) = (z-z1)(z-z2)...(z-zn)
只要证明在|z|=1上,max |P(z)| >= 1
(由于单位圆是紧的,所以最大模肯定能取到)

考虑函数G(z) = P(z)/z^n
作变换w = 1/z,得G(w) = (1-z1*w)(1-z2*w)...(1-zn*w),由于G(w)是解析函数,其最大模在边界上取到,而G(0) = 1,所以在单位圆|w|=1上max |G(w)| >= 1
而|w| = 1时,|G(w)| = |P(z)/z^n| = |P(z)|,且|z| = |1/w| = 1
这就证明了|z| = 1时,max |P(z)| >= 1追问最大值大于1 乘积不一定大于1 啊 就像 2*0.8*0.4=0.64追答|P(z)| = |z-z1|*|z-z2|*...*|z-zn| = |AP1|*|AP2|*...*|APn|就是n条线段的乘积,
这里A就是z,Pk就是zk,|z-zk|就是|APk|。
max |P(z)|表示对多项式P(z)的模求最大值,而不是求线段的最大值max |z-zk|
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯