古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a、b、c为勾股数.你认为正确吗?如果正确,请说明理由,并利用这个结论得
答案:2 悬赏:70 手机版
解决时间 2021-12-19 22:51
- 提问者网友:半生酒醒
- 2021-12-19 14:15
古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a、b、c为勾股数.你认为正确吗?如果正确,请说明理由,并利用这个结论得出一些勾股数.
最佳答案
- 五星知识达人网友:長槍戰八方
- 2022-01-22 06:23
解:正确.理由:
∵m表示大于1的整数,
∴a,b,c都是正整数,且c是最大边,
∵(2m)2+(m2-1)2=(m2+1)2,
∴a2+b2=c2,
即a、b、c为勾股数.
当m=2时,可得一组勾股数3,4,5.解析分析:欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.点评:解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
∵m表示大于1的整数,
∴a,b,c都是正整数,且c是最大边,
∵(2m)2+(m2-1)2=(m2+1)2,
∴a2+b2=c2,
即a、b、c为勾股数.
当m=2时,可得一组勾股数3,4,5.解析分析:欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.点评:解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
全部回答
- 1楼网友:逃夭
- 2022-01-22 06:48
这下我知道了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯