已知直线l1:ax-y+1=0与l2:x+ay+1=0(a∈R),给出如下结论:
①不论a为何值时,l1与l2都互相垂直;
②不论a为何值时,l1与l2都关于直线x+y=0对称;
③当a变化时,l1与l2分别经过定点A(0,1)和B(-1,0);
④当a变化时,l1与l2的交点轨迹是以AB为直径的圆(除去原点).
其中正确的结论有________.(把你认为正确结论的序号都填上)
已知直线l1:ax-y+1=0与l2:x+ay+1=0(a∈R),给出如下结论:①不论a为何值时,l1与l2都互相垂直;②不论a为何值时,l1与l2都关于直线x+y=
答案:2 悬赏:0 手机版
解决时间 2021-04-13 23:00
- 提问者网友:藍了天白赴美
- 2021-04-12 23:24
最佳答案
- 五星知识达人网友:末日狂欢
- 2021-04-12 23:53
①③④解析分析:①l1与l2垂直时,利用两直线垂直的充要条件可判断;②在l1上任取点(x,ax+1),关于直线x+y=0对称的点的坐标为(-ax-1,-x),代入l2:x+ay+1=0的左边,可得不为0,故可判断;③对于直线l1与l2分别令x=0,y=0,即可知直线恒过定点;④联立方程,消去参数,由方程可确定l1与l2的交点轨迹.解答:①a×1-1×a=0恒成立,l1与l2垂直恒成立,故①正确;②在l1上任取点(x,ax+1),关于直线x+y=0对称的点的坐标为(-ax-1,-x),代入l2:x+ay+1=0的左边,显然不为0,故②不正确;③直线l1:ax-y+1=0,当a变化时,x=0,y=1恒成立,所以l1经过定点A(0,1);l2:x+ay+1=0,当a变化时,y=0,x=-1恒成立,所以l2经过定点B(-1,0),故③正确;④联立直线l1:ax-y+1=0与l2:x+ay+1=0,消去参数a可得:x2+x+y2-y=0(x≠0,y≠0),∴当a变化时,l1与l2的交点轨迹是以AB为直径的圆(除去原点),故④正确.故
全部回答
- 1楼网友:痴妹与他
- 2021-04-12 23:58
谢谢回答!!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯