单选题
设有如下三个命题:
甲:相交直线l、m都在平面α内,并且都不在平面β内;
乙:直线l、m中至少有一条与平面β相交;
丙:平面α与平面β相交.
当甲成立时A.乙是丙的充分而不必要条件B.乙是丙的必要而不充分条件C.乙是丙的充分且必要条件D.乙既不是丙的充分条件又不是丙的必要条件
单选题设有如下三个命题:甲:相交直线l、m都在平面α内,并且都不在平面β内;乙:直线l
答案:2 悬赏:60 手机版
解决时间 2021-03-21 16:36
- 提问者网友:謫仙
- 2021-03-21 12:46
最佳答案
- 五星知识达人网友:第幾種人
- 2021-03-21 13:37
C解析分析:判断乙是丙的什么条件,即看乙?丙、丙?乙是否成立.当乙成立时,直线l、m中至少有一条与平面β相交,则平面α与平面β至少有一个公共点,故相交相交.反之丙成立时,若l、m中至少有一条与平面β相交,则l∥m,由已知矛盾,故乙成立.解答:当甲成立,即“相交直线l、m都在平面α内,并且都不在平面β内”时,若“l、m中至少有一条与平面β相交”,则“平面α与平面β相交”成立;若“平面α与平面β相交”,则“l、m中至少有一条与平面β相交”也成立故选C.点评:本题考查空间两条直线、两个平面的位置关系判断、充要条件的判断,考查逻辑推理能力.
全部回答
- 1楼网友:你可爱的野爹
- 2021-03-21 14:54
好好学习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯